New SiC Epitaxial Growth Process with up to 100% BPD to TED Defect Conversion on 150mm Hot-Wall CVD Reactor

2019 ◽  
Vol 963 ◽  
pp. 123-126
Author(s):  
Tobias Höchbauer ◽  
Christian Heidorn ◽  
Nikolaos Tsavdaris

The future challenges for SiC device technology are cost reduction and increased reliability. A key point to achieve that is the increase of yield during epitaxial layer growth through the reduction of structural defects (such as basal plane dislocations and triangle defects), an increased thickness and doping uniformity, and a high growth rate. Despite significant advancements in SiC epitaxial growth technology, it still constitutes a big challenge to find the optimum working point at which all those requirements are fulfilled. By implementing a new epitaxial layer growth process, we are able to grow basal plane dislocation free epitaxial layers, while the density of other structural defects remains low. Additionally, intra-wafer thickness and doping uniformities of the epitaxial layers are further improved.

2007 ◽  
Vol 556-557 ◽  
pp. 137-140 ◽  
Author(s):  
Lucia Calcagno ◽  
Gaetano Izzo ◽  
Grazia Litrico ◽  
G. Galvagno ◽  
A. Firrincieli ◽  
...  

High growth rate of 4H-SiC epitaxial layers can be reached with the introduction of HCl in the deposition chamber. The effect of the Cl/Si ratio on this epitaxial growth process has been studied by optical and electrical measurements. Optical microscopy shows an improvement of the surface morphology and luminescence measurements reveal a decrease of epitaxial layer defects with increasing the Cl/Si ratio in the range 0.05–2.0. The leakage current measured on the diodes realized on these wafers is reduced of an order of magnitude and DLTS measurements show a decrease of the EH6,7 level concentration in the same range of Cl/Si ratio. The value Cl/Si=2.0 allows to grow epitaxial layers with the lowest defect concentration.


2008 ◽  
Vol 600-603 ◽  
pp. 123-126 ◽  
Author(s):  
Francesco La Via ◽  
Gaetano Izzo ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Condorelli ◽  
...  

The growth rate of 4H-SiC epi layers has been increased up to 100 µm/h with the use of trichlorosilane instead of silane as silicon precursor. The epitaxial layers grown with this process have been characterized by electrical, optical and structural characterization methods. Schottky diodes, manufactured on the epitaxial layer grown with trichlorosilane at 1600 °C, have higher yield and lower defect density in comparison to diodes realized on epilayers grown with the standard epitaxial process.


2006 ◽  
Vol 527-529 ◽  
pp. 147-152 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Tomohisa Kato ◽  
Satoshi Kuroda ◽  
Hajime Okumura ◽  
Kazuo Arai

We have investigated the generation of new dislocations during the epitaxial growth of 4H-SiC layers. Dislocations were mainly propagated from the substrate into the epitaxial layer. However, it was found that some amount of new threading edge dislocations (TEDs) and basal plane dislocations (BPDs) were generated during the epitaxial growth. The generation of those dislocations appeared to depend on the in-situ H2 etching conditions, not the epitaxial growth conditions. By optimizing in-situ H2 etching condition, we were able to effectively suppress the generation of new dislocations during epitaxial growth, and obtain 4H-SiC epitaxial layers which have the equivalent etch pit density (EPD) to the substrates. Our additional investigation of the conversion of BPDs to TEDs revealed that its efficiency similarly depends on in-situ H2 etching. We were able to obtain a high conversion efficiency of 97 % by optimizing the in-situ H2 etching conditions before epitaxial growth.


2007 ◽  
Vol 556-557 ◽  
pp. 129-132 ◽  
Author(s):  
T. Hori ◽  
Katsunori Danno ◽  
Tsunenobu Kimoto

Fast homoepitaxial growth of 4H-SiC has been carried out on off-axis (0001) substrates by horizontal hot-wall CVD at 1600οC. High growth rate up to 24 μm/h has been achieved with mirror-like surface in the C/Si ratio range of 1.0-2.0. The Z1/2 and EH6/7 concentrations can be kept as low as 7 × 1011 cm-3 and 3 × 1011 cm-3, although an unknown trap (UT1) is observed with the concentration in the 1011 cm-3 range. The photoluminescence spectra are dominated by strong free exciton peaks, and the L1 peak is not observed. The basal-plane dislocation (BPD) density has decreased with increase in growth rate, and it can be reduced to 22 cm-2 when epilayers are grown on Chemical Mechanically Polished (CMP) substrates at a growth rate of 24 μm/h.


2017 ◽  
Vol 897 ◽  
pp. 43-46 ◽  
Author(s):  
Kazukuni Hara ◽  
Hiroaki Fujibayashi ◽  
Yuuichi Takeuchi ◽  
Shoichiro Omae

In this work, we have developed a selective embedded epitaxial growth process on 150-mm-diameter wafer by vertical type hot wall CVD reactor with the aim to realize the all-epitaxial 4H-SiC MOSFETs [1, 2, 3, 4, 5]. We found that at elevated temperature and adding HCl, the epitaxial growth rate at the bottom of trench is greatly enhanced compare to growth on the mesa top. And we obtain high growth rate 7.6μm/h at trench bottom on 150mm-diameter-wafer uniformly with high speed rotation (1000rpm).


2018 ◽  
Vol 924 ◽  
pp. 76-79
Author(s):  
Yong Qiang Sun ◽  
Gan Feng ◽  
Jun Yong Kang ◽  
Wei Ning Qian ◽  
Yi Yang Li ◽  
...  

In this work we report the latest epitaxial growth of 150 mm 4H-SiC on 4° off-axis substrates by a commercial hot-wall reactor. A statistical analysis of more than 300 runs with an epi thickness range of 6μm~15μm shows that the average uniformities of the thickness and the doping concentration are 1.34% (sigma/mean) and 3.90% (sigma/mean), respectively, and the average 2 mm x 2 mm projected device yield is 97.79%. The growths of ~60 μm-thick 150 mm 4H-SiC epitaxial layers have also been carried out. The repeatability of this system for thick epitaxial layer growth has been verified, showing a run-to-run uniformity similar to that of the thin wafers. These results of 150 mm 4H-SiC epitaxial growths indicate that this comercial hot-wall reactor has the potential for mass production of large diameter 4H-SiC epitaxial wafers.


2014 ◽  
Vol 778-780 ◽  
pp. 99-102 ◽  
Author(s):  
Keiko Masumoto ◽  
Sachiko Ito ◽  
Hideto Goto ◽  
Hirotaka Yamaguchi ◽  
Kentaro Tamura ◽  
...  

We have investigated a conversion of basal plane dislocation (BPD) to threading edge dislocation (TED) in growth of epitaxial layers (epi-layers) on 4H-SiC vicinal substrates with an off-angle of 0.85° at low C/Si ratio of 0.7 by using deep KOH etching and X-ray topography observations. Deep KOH etching indicated that BPDs in the substrates converted to TEDs in the epi-layers. X-ray topography observations suggested that the conversion occurred during epitaxial growth when the thickness of epi-layers was less than 1.5 μm. We found that the conversion ratio obtained from counting deep KOH etch pits was over 99%.


2015 ◽  
Vol 821-823 ◽  
pp. 153-156 ◽  
Author(s):  
Yong Qiang Sun ◽  
Gan Feng ◽  
Li Ping Lv ◽  
Wei Ning Qian ◽  
Yi Yang Li ◽  
...  

Homo-epitaxial growth of 4H-SiC on 4o off-axis 150 mm diameter substrates has been performed in a commercial warm-wall multi-wafer planetary reactor. Based on our well developed 100 mm 4H-SiC epitaxial growth process, which can achieve excellent thickness and doping uniformities (δ/mean) of <1% and <5%, respectively, the growth process and hardware were further fine-tuned and improved for 150 mm 4H-SiC homoepitaxy. After the improvement, the 6 to7 μm thick epilayer uniformity has reached 1.1% with a 5mm edge exclusion while the doping uniformity has improved to 16.5% (<10%) with an edge exclusion of 5 mm (10mm), respectively. Surface roughness of the as-grown 150 mm 4H-SiC epitaxial layer has an RMS value of 0.12 nm scanned by AFM on 20×20 μm2 areas. Homo-epitaxial growth on C-face 150 mm 4H-SiC substrates has also been carried out. Other than the doping concentration and uniformity, the other results are very close to the epi-growth on Si-face.


2006 ◽  
Vol 527-529 ◽  
pp. 179-182 ◽  
Author(s):  
Stefano Leone ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
Giuseppe Abbondanza ◽  
F. Portuese ◽  
...  

4H-SiC epitaxial layers have been grown using trichlorosilane (TCS) as the silicon precursor source together with ethylene as the carbon precursor source. A higher C/Si ratio is necessary compared with the silane/ethylene system. This ratio has to be reduced especially at higher Si/H2 ratio because the step-bunching effect occurs. From the comparison with the process that uses silane as the silicon precursor, a 15% higher growth rate has been found using TCS (trichlorosilane) at the same Si/H2 ratio. Furthermore, in the TCS process, the presence of chlorine, that reduces the possibility of silicon droplet formation, allows to use a high Si/H2 ratio and then to reach high growth rates (16 *m/h). The obtained results on the growth rates, the surface roughness and the crystal quality are very promising.


Sign in / Sign up

Export Citation Format

Share Document