Interfacial Reaction between Sn and Cu-Ti Alloy (C1990HP)

2019 ◽  
Vol 964 ◽  
pp. 263-269
Author(s):  
Andromeda Dwi Laksono ◽  
Jing Shiun Chang ◽  
Jessie Yan ◽  
Yee Wen Yen

The interfacial reaction between pure tin and substrate with the composition of Cu-4.3 at% Ti (C1990HP) was investigated using the reaction couple technique from 240 °C until 270 °C in the range 0.5~4.0h. The SEM images show the Cu6Sn5 and small precipitated Ti2Sn3 phase formed at the Sn/C1990HP interface. In addition of Ti substantially increased the amount of intermetallic compound (IMC) at the interface which separated parts of Cu6Sn5 compounds with the inner region containing more Ti than the outer. The existence of Sn/C1990HP on the liquid/solid state reaction indicates that spalling occurred with changes in reaction time and temperature. With increased reaction temperature and time, the grain produced an abnormal condition resulting in Cu6Sn5 not accumulating at the interface and spalling into the solder in addition to grain ripening and an increase in total layer thickness. The hexagonal prism-shaped Cu6Sn5 phase is found on the top of the C1990HP substrate when the Cu6Sn5 layer detaches. The reaction phase formation, detachment, and split mechanisms are proposed in this study.

2006 ◽  
Vol 21 (12) ◽  
pp. 2986-2990 ◽  
Author(s):  
Yee-Wen Yen ◽  
Chien-Chung Jao ◽  
Chiapyng Lee

The effect of Cu added eutectic Sn–9Zn solder reacting with the Ag substrate has been investigated in this study. Three Ag–Zn intermetallic compounds (IMCs), ∈–AgZn3, γ–Ag5Zn8, and ζ–AgZn, were formed on the Sn–9Zn/Ag interface at 260 °C. While Cu was gradually added to the Sn–9Zn alloy, microstructures of intermetallic compounds changed dramatically. The intermetallic compound microstructures became loose and Sn and Cu atoms in the Ag-Zn intermetallic compounds increased. If more than 3 wt% of Cu was added to the Sn-9Zn alloy, Ag-Sn intermetallic compounds were formed on the Ag surface and massive spalling of Ag–Zn IMC layers from the Ag surface occurred in a short reaction time.


2021 ◽  
pp. 151878
Author(s):  
Shiyu Niu ◽  
Zhenwen Yang ◽  
Ying Wang ◽  
Dongpo Wang

2018 ◽  
Vol 54 (5) ◽  
pp. 4115-4123 ◽  
Author(s):  
Xiang Zhou ◽  
Ying Zhu ◽  
Xiang Ke ◽  
Kaili Zhang

2008 ◽  
Vol 580-582 ◽  
pp. 243-246 ◽  
Author(s):  
Hiroshi Nishikawa ◽  
Akira Komatsu ◽  
Tadashi Takemoto

The reaction between Sn-Ag (-Co) solder and electroless Ni-P plating was investigated in order to clarify the effect of the addition of Co to Sn-Ag solder on the formation of intermetallic compound (IMC) at the interface and the joint strength at the interface. Sn-Ag-Co solder was specially prepared. The results show that there is little effect of the addition of Co to the Sn-Ag solder on the IMC formation and the thickness of the IMC at the interface. For the pull strength of the solder bump joint, the addition of Co to the solder didn’t strongly affect the pull strength of the solder joints, but it affected the fracture mode of the solder joints.


2019 ◽  
Vol 74 (1) ◽  
pp. 85-90
Author(s):  
Marius Schöttle ◽  
Dominik Schuchardt ◽  
Andreas Edenharter ◽  
Sebastian Koch ◽  
Jürgen Senker ◽  
...  

AbstractApplying a nematic liquid crystalline phase of a synthetic Na-hectorite with layer separations >100 nm, the reaction time for pillaring with Al13 Keggin oligocation could be reduced to seconds ensuring that cation exchange is controlled by thermodynamics. With this material at hand we are able to resolve the long-standing dispute regarding the charge of intercalated Keggin oligocations. Micropore sizes as determined by physisorption isotherms, adsorption isotherms obtained via elemental analysis, and results of 27Al solid-state NMR and pyridine probe IR spectroscopy favor a charge of +7 for the Al13 pillars intercalated into hectorite unaltered.


2021 ◽  
Vol 11 (1) ◽  
pp. 96-104
Author(s):  
Ruziel Larmae Gimpaya ◽  
Shari Ann Botin ◽  
Rinlee Butch Cervera

An all-solid-state Lithium button cell with Ga-doped Li7La3Zr2O12 (Ga-LLZO) as solid electrolyte, LiFePO4-based as cathode, and Li metal as anode has been successfully fabricated and characterized. The solid electrolyte was first optimized to obtain a high total conductivity. Different compositions of Li7-3xGaxLa3Zr2O12, where x =0, 0.1, 0.2, and 0.3. Li7La3Zr2O12 (LLZO) were synthesized using solid-state reaction and were characterized for its structural, morphological, electrical conductivity properties. XRD patterns of all sintered samples showed that all of the major peaks can be indexed to a cubic-phased garnet LLZO. SEM images revealed a densified sintered samples with relative densities of about 90% for all samples. Among the different studied compositions, the Ga-doped LLZO with x = 0.1 achieved the highest total conductivity of about 2.03 x 10-4 Scm-1 at 25oC, with an activation energy of 0.31 eV. From this solid electrolyte, an all-solid-state Lithium battery, 2032 button cell, was fabricated using LiFePO4-based cathode and Lithium metal as the anode. Charging and discharging characteristics were performed at 1C, 0.5C, and 0.2C rates. The results showed a good retention of coloumbic efficiency even after 50 cycles of charge and discharge. The capacity retention is about 15-20% after 50 cycles. The best performance of the coin cell battery revealed an initial specific discharging capacity of about 140 mAh/g using C/5 rate.


2013 ◽  
Vol 795 ◽  
pp. 640-643 ◽  
Author(s):  
Rozana A.M. Osman ◽  
Mohd Sobri Idris

Fresnoite with composition Ba2TiSi2O8 (B2TS2) was first found in 1965, adopting a non-centrosymmetric structure. It also reported to crystallize in a tetragonal unit cell with a=8.52Å and c=5.210Å leading to some possible application as hydrophone, transducer and second harmonic generation and low temperature co-fired ceramics (LTCC). B2TS2 were synthesized by conventional solid state reaction. Phase pure B2TS2 was obtained after heating the pellets at a final sintering temperature of 1230 °C in air at 92 h. Study found that Fresnoite B2TS2 is a type of materials which are not ferroelectric and instead show perfect dielectric insulator behaviour with resistance >106Ωcm at temperatures below 750°C and also shows nonideal debye respone. The activation energy for conduction of B2TS2 samples is very high, indicating that these materials are highly insulating.


2017 ◽  
Vol 17 (2) ◽  
pp. 227-239 ◽  
Author(s):  
T. Triyono ◽  
N. Muhayat ◽  
A. Supriyanto ◽  
L. Lutiyatmi

AbstractThe gas porosity is one of the most serious problems in the casting of aluminum. There are several degassing methods that have been studied. During smelting of aluminum, the intermetallic compound (IMC) may be formed at the interface between molten aluminum and solid steel of crucible furnace lining. In this study, the effect of degassing treatment on the formations of IMC has been investigated. The rectangular substrate specimens were immersed in a molten aluminum bath. The holding times of the substrate immersions were in the range from 300 s to 1500 s. Two degassing treatments, argon degassing and hexachloroethane tablet degassing, were conducted to investigate their effect on the IMC formation. The IMC was examined under scanning electron microscope with EDX attachment. The thickness of the IMC layer increased with increasing immersion time for all treatments. Due to the high content of hydrogen, substrate specimens immersed in molten aluminum without degasser had IMC layer which was thicker than others. Argon degassing treatment was more effective than tablet degassing to reduce the IMC growth. Furthermore, the hard and brittle phase of IMC, FeAl3, was formed dominantly in specimens immersed for 900 s without degasser while in argon and tablet degasser specimens, it was formed partially.


2021 ◽  
Author(s):  
Zhijun Hu ◽  
Xinyu Cao ◽  
Guanhong Huang ◽  
Daliang Guo

Abstract Here, a new pretreatment method has been developed to produce CNFs from micro-fibrillated cellulose (MFC) by supercritical CO 2 pretreatment followed with ball-milling (SCB). MFC was obtained from cotton stalk by chemical purification.Experimental factors were controlled to enhance the properties of SCB-CNF, meanwhile a comparative study was conducted with the method of TEMPO oxidation and microfluid homogenization (TMH). Compared to TMH-CNF, the SCB-CNF has such advantages as Energy saving, high efficiency and environmental protection, indicating a wide application in heat-resistant materials, load materials and other fields. The solid yields of P-MFC after supercritical CO 2 pretreatment gradually decreased together with the temperature and the reaction time. Scanning electron microscope (SEM) images of the SCB-CNF and TMH-CNF show that the morphology of the SCB-CNF was basically acicular but that of the TMH-CNF was mainly soft fibrous. The SCB-CNF is smaller in width and shorter in length, and its size is between CNC and CNF. Thermal gravimetric results suggest that the thermal stability of the SCB-CNF was substantially higher than those of the TMH-CNF. XRD results indicate that the crystallinity showed an initial increasing trend and then declined with increasing temperature and reaction time, and the crystallinity value of SCB-CNF was larger than that of CNFs. The smaller SCB-CNF became rougher and had a larger surface area. High crystallinity make good thermal stability, short and coarse fiber, easier to disperse than CNF, less energy consumption for dispersion, better than 3D mesh. It can be widely used in polymer composites, reinforcing agents, membrane materials and other fields.


Sign in / Sign up

Export Citation Format

Share Document