brittle phase
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 1)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Liang Hu ◽  
Bo Gao ◽  
Ning Xu ◽  
Yue Sun ◽  
Ying Zhang ◽  
...  

The effect of Ce and Mg on surface microcracks of Al–20Si alloys induced via high-current pulsed electron beam (HCPEB) was studied. Mg was revealed to refine the primary Si phase in the pristine microstructure by forming a Mg2Si phase, leading to the suppression of microcrack propagation within the brittle phase after HCPEB irradiation. The incorporation of Ce into the Al–Si–Mg alloys further refined the primary Si phase and reduced the local stress concentration in the brittle phase induced by HCPEB irradiation. Ultimately, the surface microcracks were observed to be eliminated by the synergistic effects between the two elements. For Al–20Si–5Mg–0.7Ce alloys, Ce demonstrated a homogeneous distribution in the Al matrix on the HCPEB-irradiated alloy surface, while the Mg and Si exhibited a certain degree of aggregation in the Mg2Si phase. Metastable structures were formed on the HCPEB-irradiated alloy surface, including the nano-primary silicon phase, nano-cellular aluminium structure, and nano-Mg2Si phase. Compared with alloy specimens containing Mg, the Al–20Si–5Mg–0.7Ce alloy specimens exhibited an excellent anticorrosion property after HCPEB irradiation mainly due to the combined effects of the grain refinement and microcrack elimination.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1006
Author(s):  
Sergei Galyshev

The process of the production of a CF/Al-wire by pulling carbon fibers through an aluminum melt has at least 15 parameters. The main parameters include the power of ultrasonic treatment, the time of contact of the fiber with the matrix melt, and the melt temperature. In addition, the presence of a barrier coating on the fiber surface and its thickness significantly affects the properties of the resulting material. The importance of these parameters is due to their direct effect on the chemical interaction between the aluminum matrix and the carbon fiber. This interaction leads to the formation of aluminum carbide, a hygroscopic, brittle phase that ultimately significantly reduces the strength of such composites. In this regard, limiting a chemical reaction at the matrix/fiber interface in the production of CF/Al composites is one of the main technological problems. The main goal of this work is to pragmatically elucidate the effect of the above parameters on the strength of CF/Al composites. It is shown that the strength of a CF/Al-wire can reach 2000 MPa.


2021 ◽  
Author(s):  
MD. S.M. Chowdhury

Mechanical properties of friction stir welded (FSWed), double sided arc welded (DSAWed), fiber laser welded (FLWed) and diode laser welded (DLWed) on AZ31B Mg alloy were studied. After welding, grains at the centre became recrystallized. Brittle phase β-Mg₁₇AI₁₂ particles observed at the centre of the joint during fusion welding process. The yield strength (YS), ultimate tensile strength (UTS) and fatigue strength were lower in the FDWed samples than in the DSAWed samples. Welding defect at the bottom of the FDWed joint was observed when right hand thread (RHT) weld tool was considered. In FLWed joint, YS, UTS and fatigue strength, with a joint efficiency of ~91% was achieved while the YS, UTS and fatigue strength of the DLWed joints were notably lower. The DSAWed joints and DLWed joints exhibited a higher strain hardening capacity in comparison with the FSWed joints and FLWed joints, respectively.


2021 ◽  
Author(s):  
MD. S.M. Chowdhury

Mechanical properties of friction stir welded (FSWed), double sided arc welded (DSAWed), fiber laser welded (FLWed) and diode laser welded (DLWed) on AZ31B Mg alloy were studied. After welding, grains at the centre became recrystallized. Brittle phase β-Mg₁₇AI₁₂ particles observed at the centre of the joint during fusion welding process. The yield strength (YS), ultimate tensile strength (UTS) and fatigue strength were lower in the FDWed samples than in the DSAWed samples. Welding defect at the bottom of the FDWed joint was observed when right hand thread (RHT) weld tool was considered. In FLWed joint, YS, UTS and fatigue strength, with a joint efficiency of ~91% was achieved while the YS, UTS and fatigue strength of the DLWed joints were notably lower. The DSAWed joints and DLWed joints exhibited a higher strain hardening capacity in comparison with the FSWed joints and FLWed joints, respectively.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1212
Author(s):  
Jun Liang ◽  
Chunjing Wu ◽  
Hang Ping ◽  
Ming Wang ◽  
Weizhong Tang

Carbon fiber is mainly distributed in the shape of short fibers and continuous fiber bundles as the reinforcing phase in metal matrix composites, and it is seldom studied as braided rope shaped to reinforce the matrix. For this paper, the pretreatment and the surface metallization of the carbon fiber braided rope were studied. Besides, the casting experiments of aluminum-based carbon fiber braided rope composites were performed without external pressure. XPS analysis shows that the surface of the carbon fiber braided rope treated with ultrasonic degumming contains many hydrophilic oxygen-containing functional groups C-OH, C=O, COOH, etc., which can effectively improve the wettability between the carbon fiber braided rope and the aluminum matrix. SEM, EDS, and XRD were used to analyze the micromorphology and structure of the copper plating on the surface of carbon fiber braided ropes obtained from different pH plating solutions. When pH is 12, a continuous, uniform, and dense layer was formed on the surface of carbon fiber braided ropes. In addition, copper coating can effectively inhibit the formation of Al4C3 brittle phase. Finally, the mechanical properties results indicated that the tensile strength of the carbon fiber bundle and carbon fiber rope reinforced composite materials were 69 MPa and 83 MPa, respectively, indicating that the reinforcing effect of the carbon fiber rope is better than that of the carbon fiber bundle.


Author(s):  
Fakun Zhuang ◽  
Wen Liu ◽  
Guoshan Xie ◽  
Shanshan Shao ◽  
Zhiyuan Han

Abstract The hydrocracking reactor, serving at the high temperature and pressure and containing S and N elements in medium, are the key equipment in the hydrocracking plant. Due to the severe operational conditions, flange and nozzle cracking commonly occurs, especially for the seal groove between the flange and gasket. A cracked stainless flange is found in a hydrocracking reactor during parking and maintenance. Through a series of experiments including chemical composition, metallographic analysis, SEM and fracture analysis, the flange seal groove is analyzed. Under the long term operation at high temperature and high pressure, the σ phase is found in the flange material which will increase the cracking tendency. The hydrogen content measurement also proves that the material has the hydrogen embrittlement tendency. Hence, the combination of σ brittle phase and high stress causes the flange seal groove cracking. After cracking, hydrogen element enters the fracture, thus accelerating the crack growth. Therefore, in order to prevent the flange cracking, the assembly stress should be controlled in an appropriate range. If necessary, periodical inspection must be performed.


2020 ◽  
Vol 34 (17) ◽  
pp. 2050156
Author(s):  
Zhi Li ◽  
Zhen Zhao ◽  
Tong-Tong Shi ◽  
Xi-Min Zang

To clear the intermetallic Fe-N phases, how to effect the strength and magnetic features of iron nitrides thin films, the thermodynamic, mechanical and magnetic attributes of the Fe-N phases have been calculated at Perdew, Burke and Enzerhof (PBE) level. The results show that the [Formula: see text] and [Formula: see text] phases are more stable than the other considered Fe-N phases by the formation energies. [Formula: see text] and [Formula: see text] phases are metastable at 0 K, which can be further decomposed into other more stable phases with temperature decreasing, i.e., [Formula: see text] and [Formula: see text]. [Formula: see text] is the only brittle phase, while [Formula: see text] is the most ductile phase. The [Formula: see text] possesses the highest thermal conductivity by Debye temperatures. The [Formula: see text] possesses the highest anisotropic behavior by [Formula: see text], [Formula: see text] and [Formula: see text] values. The [Formula: see text] and FeN phases possess higher average magnetic moments (MM) than their neighbors. The [Formula: see text] has stronger ionic bond by Mülliken population analysis.


2020 ◽  
Vol 993 ◽  
pp. 152-160
Author(s):  
Fan Wang ◽  
Yun Feng ◽  
Ming Shi Li ◽  
Xin Ying Teng

The effect of Ca and Zr Additions and Aging Treatments on Microstructure and Mechanical Properties of Mg-Sn alloy was investigated. It was found that the grain size of as-cast Mg-4Sn-xCa and Mg-4Sn-xZr alloys was refined with the increase of alloying elements addition. The alloys were solution-treated at 480 °C and aged at 160 °C, and the aging peak appeared after 4-5 h. The difference was that the maximum tensile strength and Brinell hardness of Mg-4Sn-0.3Ca were 140.7 MPa and 44.5 HB, respectively, while in Mg-4Sn-xZr alloy, Mg-4Sn-0.5Zr was optimal. The maximum tensile strength and Brinell hardness of Mg-4Sn-0.5Zr were 137.4 MPa and 41.5 HB, respectively. This difference was mainly due to the formation of the brittle phase CaMgSn in the Mg-4Sn-xCa alloy. The excessive brittle phase was not conducive to the strength of the alloy, but could increase the hardness of the alloy. However, Zr existed as a simple substance in the alloy, which can be used as a nucleation particle to inhibit grain growth and play a role of fine grain strengthening. But the addition of Zr did not form many hard phases, so the hardness did not change much.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Hui Yang ◽  
Jihui Wu

Nanosilver paste, an interconnect solder, is a common choice in the electronics packaging industry. However, higher sintering temperature and lower sintering strength limit its application. At present, doped nanosilver paste has been studied for use in chip interconnection. In order to improve the sintering properties and shear strength of nanosilver paste, we have developed a new tin-doped nanosilver paste (referred to as silver tin paste), and according to the decomposition temperature of the organic dispersant in the slurry, a corresponding sintering process with a maximum temperature of 300°C was developed. The product after sintering of the silver tin paste is a mixture of a solid solution of Ag and an Ag3Sn phase. Among them, the hard and brittle phase Ag3Sn diffuse distribution in the silver matrix for strengthening, and the solid solution of Ag acts as a replacement solid solution strengthening. As the content of doped Sn increases, the sintering strength increases remarkably. When the Sn content is 5%, the joint shear strength reaches the highest value of 50 MPa. When it exceeds 5%, the sintering strength gradually decreases, which may be caused by the excessive formation of the intermetallic compound IMC as the dopant content increases. This new tin-doped nanosilver technology has the characteristics of low-temperature sintering and high-temperature service, so it is expected to be widely used in semiconductor power devices.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1118 ◽  
Author(s):  
Deli Zhao ◽  
Yu Zhou ◽  
Jiangyu Fan ◽  
Tianyu Liu ◽  
Yihong Nie ◽  
...  

The morphology and microstructural evaluation of Y phases in AISI 321 (a Ti-stabilized stainless steel) were characterized after hot deformation. The electronic structure and phase stability of titanium carbosulfide were further discussed by first-principle calculations. It was found that Y phases, like curved strips or bones in AISI 321 stainless steel, mostly show a clustered distribution and are approximately arranged in parallel. The width of the Y phase is much less than the length, and the composition of the Y phase is close to that of Ti2SC. Y phases have exceptional thermal stability. The morphology of Y phases changed considerably after forging. During the first calculations, the Ti2SC with hexagonal structure does not spontaneously change into TiS and TiC; however Ti4S2C2 (Z = 2) can spontaneously change into the two phases. The Ti–S bonds are compressed in Ti4S2C2 cells, which leads to poor structural stability for Ti4S2C2. There is a covalent interaction between C/S and Ti, as well as an exchange of electrons between Ti and S/C atoms. Evidently, the mechanical stability of Ti4S2C2 is weak; however, Ti2SC shows high stability. Ti2SC, as a hard brittle phase, does not easily undergo plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document