Characteristics of Large Area Perovskite Solar Cells from Electrodes of Used Car Batteries

2019 ◽  
Vol 966 ◽  
pp. 373-377
Author(s):  
Ayi Bahtiar ◽  
Cyntia Agustin ◽  
Euis Siti Nurazizah ◽  
Annisa Aprilia ◽  
Darmawan Hidayat

Power conversion efficiency (PCE) of perovskite solar cells increases very rapidly and more than 22% is already achieved. However, some problems still need to be resolved for mass production and commercialization, including reducing production costs and development of large area solar cells. The best PCE is reached by very small active area, mostly below 0.5 cm2 which is mostly produced by spin-coating technique. Moreover, the perovskite precursor materials, mostly lead (II) iodide (PbI2) and hole-transport materials (HTM) Spiro-OMeTAD are expensive material in perovskite solar cells. Therefore, the use of low-cost perovskite precursors and low-cost HTM materials is one way to reduce the whole production costs of perovskite solar cells. Nowadays, many groups have been developed HTM-free perovskite solar cells using carbon-based mesoscopic solar cells for low cost production and large area perovskite solar cells, although the PCE of large area perovskite solar cells is still half than that very small area prepared by spin-coating technique. Here, we report our recent study to fabricate perovskite solar cells using mesoscopic carbon-based structure consisting of glass/ITO/TiO2/ZrO2/perovskite/carbon with active area larger than 1 cm2 by use of simple screen printing technique in ambient air with high humidity. We also synthesize PbI2 as perovskite precursor material from electrodes of used car battery to reduce the cost of solar cells production. Although, the PCE is still much lower than that reported by other groups, however, our study shows that perovskite solar cells from used car battery and with active area more than 1 cm2 can be fabricated in ambient air with high humidity by use of simple screen printing technique.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


2015 ◽  
Vol 51 (49) ◽  
pp. 10038-10041 ◽  
Author(s):  
Meng Zhang ◽  
Hua Yu ◽  
Jung-Ho Yun ◽  
Miaoqiang Lyu ◽  
Qiong Wang ◽  
...  

Smooth organolead halide perovskite films were prepared by a facile blow-drying method in ambient air for achieving efficient and low cost meso/planar hybrid structured perovskite solar cells.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 915 ◽  
Author(s):  
Lei Shi ◽  
Huiying Hao ◽  
Jingjing Dong ◽  
Tingting Zhong ◽  
Chen Zhang ◽  
...  

Intermediate phase is considered an important aspect to deeply understand the crystallization procedure in the growth of high-quality perovskite layers by an anti-solvent technique. However, the moisture influence on the intermediate phase formation is not clear in air conditions as yet. In this work, pure (FA0.2MA1.8)Pb3X8(DMSO·DMF) intermediate phase was obtained in as-prepared perovskite film by spin-coating the precursor of co-solvent (DMSO and DMF) in an ambient air (RH20–30%). Moreover, the appropriate quantity of ethyl acetate (C4H8O2, EA) also controls the formation of pure intermediate phase. The uniform and homogeneous perovskite film was obtained after annealing this intermediate film. Therefore, the best power conversion efficiency (PCE) of perovskite solar cells (PSCs) is 16.24% with an average PCE of 15.53%, of which almost 86% of its initial PCE was preserved after 30 days in air conditions. Besides, the steady-state output efficiency ups to 15.38% under continuous illumination. In addition, the PCE of large area device (100 mm2) reaches 11.11% with a little hysteresis effect. This work would give an orientation for PSCs production at the commercial level, which could lower the cost of fabricating the high efficiency PSCs.


2015 ◽  
Vol 51 (79) ◽  
pp. 14696-14707 ◽  
Author(s):  
B. Susrutha ◽  
Lingamallu Giribabu ◽  
Surya Prakash Singh

Flexible thin-film photovoltaics facilitate the implementation of solar devices into portable, reduced dimension, and roll-to-roll modules. In this review, we describe recent developments in the fabrication of flexible perovskite solar cells that are low cost and highly efficient and can be used for the fabrication of large-area and lightweight solar cell devices.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850035 ◽  
Author(s):  
Zhixin Zhang ◽  
Shuqun Chen ◽  
Pingping Li ◽  
Hongyi Li ◽  
Junshu Wu ◽  
...  

This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Simone M. P. Meroni ◽  
Carys Worsley ◽  
Dimitrios Raptis ◽  
Trystan M. Watson

Perovskite solar cells (PSCs) have already achieved comparable performance to industrially established silicon technologies. However, high performance and stability must be also be achieved at large area and low cost to be truly commercially viable. The fully printable triple-mesoscopic carbon perovskite solar cell (mCPSC) has demonstrated unprecedented stability and can be produced at low capital cost with inexpensive materials. These devices are inherently scalable, and large-area modules have already been fabricated using low-cost screen printing. As a uniquely stable, scalable and low-cost architecture, mCPSC research has advanced significantly in recent years. This review provides a detailed overview of advancements in the materials and processing of each individual stack layer as well as in-depth coverage of work on perovskite formulations, with the view of highlighting potential areas for future research. Long term stability studies will also be discussed, to emphasise the impressive achievements of mCPSCs for both indoor and outdoor applications.


2020 ◽  
Author(s):  
Navjyoti ◽  
Vibha Saxena ◽  
Shovit Bhattacharya ◽  
Ajay Singh ◽  
Aman Mahajan ◽  
...  

2018 ◽  
Vol 8 (21) ◽  
pp. 1800538 ◽  
Author(s):  
Chengrong Yin ◽  
Jianfeng Lu ◽  
Yachao Xu ◽  
Yikai Yun ◽  
Kai Wang ◽  
...  

2018 ◽  
Vol 10 ◽  
pp. 146-152 ◽  
Author(s):  
Jialong Duan ◽  
Dawei Dou ◽  
Yuanyuan Zhao ◽  
Yudi Wang ◽  
Xiya Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document