scholarly journals Impact of K+ Doping on Modulating Majority Charge Carrier Type and Quality of Perovskite Thin Films by Two-step Solution Method for Solar Cells

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 647 ◽  
Author(s):  
Yujun Yao ◽  
Xiaoping Zou ◽  
Jin Cheng ◽  
Tao Ling ◽  
Chuangchuang Chang ◽  
...  

Traditional hetero-junction perovskite solar cells are composed of light-absorbing layers, charge carrier-transporting layers, and electrodes. Recently, a few papers on homo-junction perovskite solar cells have been studied. Here, we studied the effect of K+ doping on TiO2/PbI2 interface quality, perovskite film morphology, photo-physical properties, and majority carrier type. In particular, the K+ extrinsic doping can modulate the majority carrier type of the perovskite thin film. The study indicated that the interface between the perovskite layer and the TiO2 layer deteriorates with the increase of K+ doping concentration, affecting the electron transport ability from the perovskite film to the TiO2 layer and the photo-physical properties of the perovskite layer by K+ doping. In addition, the majority charge carrier type of perovskite thin films can be changed from n-type to p-type after K+ extrinsic doping, and the corresponding hole concentration increased to 1012 cm−3. This approach of modulating the majority charge carrier type of perovskite thin film will pave the way for the investigation of perovskite homo-junction by extrinsic doping for solar cells.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2494 ◽  
Author(s):  
Chuangchuang Chang ◽  
Xiaoping Zou ◽  
Jin Cheng ◽  
Tao Ling ◽  
Yujun Yao ◽  
...  

In the past ten years, extensive research has witnessed the rapid development of perovskite solar cells (PSCs) and diversified preparation processing craft. At present, the most widely used methods of preparing perovskite solar cells are the one-step method and the two-step method. The main work of this paper is to study the effect of the solution deposition process on the quality of perovskite thin films, as well as modulating majority charge carrier types. Perovskite film was prepared in air by designing different processes, which were then adequately analyzed with corresponding methods. It was demonstrated that the preparation process plays a crucial role in modulating the type of majority carrier and in achieving high-quality perovskite thin film. The one-step prepared perovskite layer is enriched in MA+, leading to a P type majority carrier type thin film. The two-step prepared perovskite layer is enriched in Pb2+, leading to a N type majority carrier type thin film. In addition, we found that the one-step method caused PbI2 residue due to component segregation, which seriously affects the interface and film quality of the perovskite layer. This work aims to modulate the majority carrier type of perovskite film through different preparation processes, which can lay the foundation for the study of homojunction perovskite solar cells to improve the device performance of PSCs.


2020 ◽  
Vol 979 ◽  
pp. 180-184
Author(s):  
I. Karuppusamy ◽  
K. Ramachandran ◽  
S. Karuppuchamy

The CuI thin film has been successfully prepared by using cathodic electrodeposition method. The synthesized film was characterized using advanced techniques such as XRD, SEM-EDX and UV measurements. The films are crystallized in face centered cubic structure. The crystallinity is increasing for the applied potential of-0.3 V and the crystallinity deteriorates on increasing the potential above - 0.3 V. It was also observed that the applied voltage plays an important role. Homogeneously distributed triangular faceted morphology was observed from SEM. This is consistent with the result of XRD that electrodeposited CuI thin films grow preferential orientation along the (111) crystal plane.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4039 ◽  
Author(s):  
Chuangchuang Chang ◽  
Xiaoping Zou ◽  
Jin Cheng ◽  
Tao Ling ◽  
Yujun Yao ◽  
...  

With the rapid consumption of energy, clean solar energy has become a key study and development subject, especially the when new renewable energy perovskite solar cells (PSCs) are involved. The doping method is a common means to modulate the properties of perovskite film. The main work of this paper is to incorporate trace amounts of alkali metal elements into the perovskite layer and observe the effects on the properties of the perovskite device and the majority carrier type of the perovskite film. Comparative analysis was performed by doping with Na+, K+, and Rb+ or using undoped devices in the perovskite layer. The results show that the incorporation of alkali metal ions into the perovskite layer has an important effect on the majority carrier type of the perovskite film. The majority carrier type of the undoped perovskite layer is N-type, and the majority carrier type of the perovskite layer doped with the alkali metal element is P-type. The carrier concentration of perovskite films is increased by at least two orders of magnitude after doping. That is to say, we can control the majority of the carrier type of the perovskite layer by controlling the doping subjectively. This will provide strong support for the development of future homojunction perovskite solar cells. This is of great help to improve the performance of PSC devices.


NANO ◽  
2020 ◽  
Vol 15 (03) ◽  
pp. 2050036
Author(s):  
Dan Wang ◽  
Jian Ni ◽  
Jiayi Guan ◽  
Xiaojun Zhou ◽  
Shuaiyuan Zhang ◽  
...  

Organic–inorganic hybrid perovskite solar cells have become one of the highly promising candidates for photovoltaic technologies because of their low processing cost, rapid-growing power conversion efficiency and easy preparation process. Electron transfer layer (ETL) plays an important role in exciton separation and charge transport for perovskite devices. A TiO2–ZnO binary mixed nanoparticle (NP) ETL, which can be prepared in low-temperature hydrothermal method, was proposed. By analyzing the XRD and SEM, the incorporation of mixed NPs thin film improved the interfacial stability of ZnO/perovskite and prevented the perovskite layer from being decomposed as compared to the pure ZnO NPs thin film. Furthermore, UV spectrum and EIS results show that TiO2–ZnO mixed NP ETL has high transmittance and maintains good electrical properties of pure ZnO NPs basically. Finally, the efficiency of perovskite device based on TiO2–ZnO mixed NP ETL was improved to 15%. Our research provides a simple way for the application of ZnO in PCSs.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
I. J. Ogundana ◽  
S. Y. Foo

Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.


2016 ◽  
Vol 4 (44) ◽  
pp. 17464-17472 ◽  
Author(s):  
Jingjing Chang ◽  
Juanxiu Xiao ◽  
Zhenhua Lin ◽  
Hai Zhu ◽  
Qing-Hua Xu ◽  
...  

KPFM study of various structures with a perovskite layer indicates unbalanced charge-carrier transport and extraction.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 627
Author(s):  
Ponmudi Selvan Thiruchelvan ◽  
Chien-Chih Lai ◽  
Chih-Hung Tsai

Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 314 ◽  
Author(s):  
Haiyan Ren ◽  
Xiaoping Zou ◽  
Jin Cheng ◽  
Tao Ling ◽  
Xiao Bai ◽  
...  

The hole blocking layer plays an important role in suppressing recombination of holes and electrons between the perovskite layer and fluorine-doped tin oxide (FTO). Morphological defects, such as cracks, at the compact TiO2 hole blocking layer due to rough FTO surface seriously affect performance of perovskite solar cells (PSCs). Herein, we employ a simple spin-coating SnO2 thin film solution to cover cracks of TiO2 hole blocking layer for PSCs. The experiment results indicate that the TiO2/SnO2 complementary composite hole blocking layer could eliminate the serious electrical current leakage existing inside the device, extremely reducing interface defects and hysteresis. Furthermore, a high efficiency of 13.52% was achieved for the device, which is the highest efficiency ever recorded in PSCs with spongy carbon film deposited on a separated FTO-substrate as composite counter electrode under one sun illumination.


2021 ◽  
Author(s):  
Huabin Lan ◽  
Xingye Chen ◽  
Ping Fan ◽  
Guangxing Liang

Abstract All inorganic lead-free halide perovskites have attracted much attention due to their non-toxic and good band gap. In this paper, we first prepared all inorganic lead-free perovskite CsBi3I10 thin films by single source thermal evaporation deposition. The results show that CsBi3I10 thin films prepared by single source thermal evaporation have layered structure, high purity hexagonal phase and high crystallinity, which are consistent with the theoretical calculation results. The surface of the thin film was compact and uniform, and had high homology with the crystal structure of the evaporation source material. After annealing, the crystallinity of the film was further improved. The band gap of the CsBi3I10 thin film calculated was 1.83 eV, Perovskite solar cells based on CsBi3I10 thin films exhibit an efficiency of up to 0.84%. These results indicate that the proposed single source thermal evaporation method has the potential to prepare high efficiency inorganic lead-free perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document