Constitutive Equation and Hot Processing Map for Tensile Test of Mg-13Gd-4Y-2Zn-0.5Zr Alloy at Elevated Temperature

2020 ◽  
Vol 993 ◽  
pp. 237-247
Author(s):  
Bei Bei Dong ◽  
Zhi Min Zhang ◽  
Jian Min Yu ◽  
Xin Che ◽  
Shao Bo Cheng

The high temperature tensile behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy was investigated at deformation temperature of 400-520 °C and strain rate of 0.001-0.5 s-1, and the stress-strain curves were obtained by using INSTRON 3382. The high temperature tensile constitutive model and hot processing map of the alloy were established, and the reliability of the hot processing map was further verified by analyzing the microstructure of the deformed alloy. The results showed that the dynamic recrystallization (DRX) occurred of Mg-13Gd-4Y-2Zn-0.5Zr alloy during the tensile tests under high temperature conditions, and its peak stress decreased with the increase of deformation temperature or strain rate. The Arrhenius equation can be used to fit the rheological behavior of the alloy. The thermal deformation activation energy Q was 259.13kJ/mol, and the maximum error between the model and the experimental data was less than 9%. It can be concluded that the optimum deformation parameters of the alloy were temperature of 500-520 °C and strain rate of 0.01-0.001 s-1 based on the dynamic material model and hot processing map.

Author(s):  
Emre Teker ◽  
Mohd Danish ◽  
Munish Kumar Gupta ◽  
Mustafa Kuntoğlu ◽  
Mehmet Erdi Korkmaz

AbstractIn this paper, the constitutive equation parameters (Johnson–Cook parameters) of the 33MnCrB5 material were determined with the help of tensile tests. Initially, Johnson–Cook (JC) model was used for performing the simulations of the sample with finite element analysis with the help of ANSYS software. For these operations, the sample was first used at a certain temperature (24 °C) and low strain rates (10−1, 10−2, 10−3 s−1) and quasi-static tensile tests were performed. Then, high temperature tensile tests were performed with strain rate values of 10−3 s−1 at temperatures of 300 °C, 600 °C, and 900 °C, respectively. Finally, JC parameters belonging to test materials were found in accordance with the results obtained from the high temperature tensile and quasi-static tests. In the last stage, the results obtained from the simulation software for the yield stress, maximum stress, and elongation values were compared with the experimental results. As a result, deviation values for quasi-static tests are calculated as 5.04% at yield stress, 5.57% at maximum stress, and 5.68% at elongation, while for high temperature, yield stress is 9.42%, maximum stress is 11.49% and the elongation value is 7.63%. The accuracy of JC parameters was verified with the comparison made with the obtained data.


2013 ◽  
Vol 631-632 ◽  
pp. 371-376 ◽  
Author(s):  
X.Q. Yin ◽  
S.J. Wang ◽  
Y.F. Li ◽  
B.D. Gao ◽  
X.Y. Kang ◽  
...  

Isothermal compression of the TiNiFe shape memory alloy has been carried out on a Gleeble-3500 thermal simulation machine at the deformation temperature ranging from 1023K to 1323K, the strain rate ranging from 0.01s-1 to 10s-1 with total strain of 0.8. On the basis of dynamic material model, the processing map is established with two instability regions and a desirable domain which demonstrate optimum hot working conditions within the experimental parameters. By means of Electron Back Scattering Diffraction, we come to the conclusion that both dynamic recovery and dynamic recrystallization exist in the desirable domain with deformation temperature ranging 1123 K and strain rate 0.1s-1. The uneven deformation exits in the low deformation temperature with high strain rate area, such as 1023 K and10 s-1. And with 1323K and 0.01s-1 strain rate, the recrystallized grains are abnormal grow up.


2018 ◽  
Vol 913 ◽  
pp. 43-48
Author(s):  
Jian Liang He ◽  
Da Tong Zhang ◽  
Wen Zhang ◽  
Cheng Qiu

Hot compression tests of as-homogenized Al-7.5Zn-1.5Mg-0.2Cu-0.2Zr alloy were carried out on Gleeble-3500 thermal simulation machine at the temperature ranging from 350°C to 550°C and strain rate ranging from 0.001s-1 to 10s-1. Processing maps were established on the basis of dynamic material model, and the microstructure was studied using electron back scattered diffraction (EBSD) technique. The results showed that the peak stress and steady flow stress decrease with decreasing strain rate or increasing deformation temperature. There are one peak efficiency domain and one flow instability domain in the processing maps. The flow instability domain which exists in high-strain-rate region becomes larger with increasing strain. Shear bands occur at 45° toward the compression axis at grain interiors and meanwhile flow localization occurs. The optimum deformation temperature and strain rate ranges from 450°C to 500°C and 0.003s-1 to 0.1s-1, respectively, with high power dissipation efficiency of 34-39%.


2011 ◽  
Vol 337 ◽  
pp. 328-331
Author(s):  
Qing Hua Yuan ◽  
Kun Lei ◽  
Zong Ke Shao ◽  
Zhong Guo Huang ◽  
Yu Zhou

High temperature tensile properties of Ti-4Al-6V material were obtained through high temperature tensile test, and processing maps of the material were drawn by Matlab, then strain rate sensitivity exponent m was calculated. The value of m obtained through constant strain rate stretching method was compared to the former. The results showed that processing map could not only predict the good workability region and flow instability region but also calculate the value of m accurately.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 77
Author(s):  
Xiang-Dong Jia ◽  
Yi-Ning Wang ◽  
Ying Zhou ◽  
Miao-Yan Cao

2219 aluminum alloy is a kind of high-strength Al-Cu-Mn alloy that can be strengthened by heat treatment. Its mechanical property parameters and forming properties are greatly affected by the deformation rate, temperature and strain. Taking 2219 aluminum alloy extruded bar as the research object, the Gleeble-3500 thermomechanical simulator was used to analyze the thermal compression deformation behavior of 2219 aluminum alloy under different temperatures and strain rates. The results show that the deformation behavior of 2219 aluminum alloy under high temperatures is greatly influenced by the deformation temperature and strain rate, and the flow stress is the result of high-temperature softening, strain hardening and deformation rate hardening. According to the experiment results, the Arrhenius constitutive model and the exponential constitutive model considering the influence of temperature and strain rate, respectively, were established, and the predicted results of the two constitutive models were in good agreement with the test results. On this basis, the processing map of 2219 aluminum alloy was established. Under the same strain rate condition with an increase of the deformation temperature, the power dissipation efficiency increases gradually, and the driving force of 2219 aluminum alloy to change its microstructure increases gradually. At the same deformation temperature, the lower the strain rate, the less possibility of plastic instability.


2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


2020 ◽  
Vol 831 ◽  
pp. 25-31
Author(s):  
Pan Fei Fan ◽  
Jian Sheng Liu ◽  
Hong Ping An ◽  
Li Li Liu

In order to obtain the high temperature flow behavior of as-cast SA508-3 low alloy steel, the stress-strain curves of steel are obtained by Gleeble thermal simulation compression test at deformation temperature 800°C-1200°C and strain rate 0.001s-1-1s-1. Based on Laasraoui two-stage flow stress model, a high temperature flow stress model is established by multiple linear regression method. The results show that the peak stress characteristics are not obvious at low temperature and high strain rate, which is a typical dynamic recovery characteristic. Meanwhile, the peak stress characteristics are obvious at high temperature and low strain rate, which is a typical dynamic recrystallization characteristic. By means of the comparisons between experiments and calculations, the Laasraoui two-stage flow stress model can truly reflect flow behavior of steel at high temperature, which provides theoretical guidance for the hot deformation of the steel.


Sign in / Sign up

Export Citation Format

Share Document