Effects of Zero Time Holding Quenching Temperature on Tempering Microstructure and Mechanical Properties of 40Cr Steel

2020 ◽  
Vol 993 ◽  
pp. 492-496
Author(s):  
Peng Xiao Zhu ◽  
Yi Li ◽  
Bo Chen ◽  
Kun Feng

The effects of different zero-holding quenching temperatures on the tempering microstructure, mechanical properties and wear resistance of 40Cr were studied. The results showed that the microstructure of 40Cr was tempered sorbite and a small amount of unmelted ferrite after quenching at 850 °C and tempering at 550 °C for 2 h. Tempered sorbite was obtained after quenching at 880 °C~910 °C and tempering at 550 °C for 2 h. With the increasing of quenching temperature at zero holding temperature, the tensile strength and yield strength of 40Cr increased, while the elongation and impact toughness decreased. With the decreasing of impact test temperature, the ballistic work of 40Cr decreased gradually, and decreased fastest between 0 °C~-20 °C. 40Cr had the best impact performance after quenching at 850 °C and tempering at 550 °C for 2 h. 40Cr had the smallest wear loss after quenching at 880 °C and tempering at 550 °C for 2 h. Its wear marks were smooth, and had the shallowest furrows and ridges.

2011 ◽  
Vol 215 ◽  
pp. 25-28 ◽  
Author(s):  
An Ming Li ◽  
Meng Juan Hu

The effect of quenching temperature on the microstructure and mechanical properties of 40Cr steel by zero time holding quenching were studied. The results showed that the strength and hardness of 40Cr steel increased with the increase of quenching temperature in the range of 860~940°C, the strength and hardness reach the maximum at 920°C and then decrease. The metallographic analysis shows austenite grains of the samples by “Zero Time Holding” Quenching have been refined compared with the traditional heat treatment technology. Fine lath martensite was obtained by the “zero time holding” quenching due to the smaller austenitic crystal grain and the uneven distribution of the carbon concentration in austenitic crystal grain.


2011 ◽  
Vol 335-336 ◽  
pp. 577-582
Author(s):  
Xiao Wen Chen ◽  
De Fen Zhang ◽  
Guang Wen Long ◽  
Qin Zou ◽  
Li Wang

45 steel was quenched with zero time holding at different temperatures, followed by a high temperature tempering. The influence of quenching temperature on hardness, yield strength, tensile strength and microstructure of the steels was investigated by Rockwell tester, universal testing machines and metallographic microscopy, respectively. The results show that under quenching condition of zero time holding, hardness and strength of the 45 steel increase with increasing quenching temperature and reach the maximum at 860 °C, where the content of martensite is maximum while that of ferrite is minimum in the specimen. At higher temperatures, the grains become obviously coarse, resulting in decrease of mechanical properties.


2012 ◽  
Vol 472-475 ◽  
pp. 978-981
Author(s):  
An Ming Li ◽  
Meng Juan Hu

The pretreatment process is quenching and normalizing, respectively. Influence of different original structures on tensile strength and hardness is investigated. The experimental results show that the as quenched 35CrMo steel by zero time holding quenching obtains fine lath martensite structure and has higher tensile strength and hardness. The mechanical properties of the as quenched 35CrMo steel is better than that of the as normalized 35CrMo steel. The effect of original structure on the mechanical properties of 35CrMo steel is prominent when the zero time holding quenching temperature is lower, but it decreases with the quenching temperature increasing. The austenite inverse transformation zero time holding quenched at low temperature can improve the mechanical properties of 35CrMo steel.


2019 ◽  
Vol 130 ◽  
pp. 01005
Author(s):  
Cindy Retno Putri ◽  
Anne Zulfia Syahrial ◽  
Salahuddin Yunus ◽  
Budi Wahyu Utomo

The goal of this research is to improve the mechanical properties such as strength, hardness and wear resistance for automotive application such as brake shoe and bearings due to high cycle, load and impact during their usage. Therefore, another alloying element or reinforcement addition is necessary. In this work, the composites are made by ADC 12 (Al-Si aluminum alloy) as the matrix and reinforced with micro SiC through stir casting process and TiB is added various from (0.04, 0.06, 0.15, 0.3 and 0.5) wt.% that act as grain refiners and 5 wt.% of Mg is added to improve the wettability of the composites. The addition of TiB improves the mechanical properties because the grain becomes finer and uniform, and the addition of Mg makes the matrix and reinforce have better adhesion. The results obtained that the optimum composition was found by adding 0.15 wt.% of TiB with tensile strength improve from 98 MPa to 136.3 MPa, hardness from 35 to 53 HRB and wear rate reduced from 0.006 2 mm3 s−1 to 0.002 3 mm3 s−1 respectively.


2011 ◽  
Vol 365 ◽  
pp. 98-103
Author(s):  
De Quan Shi ◽  
Gui Li Gao ◽  
Zhi Wei Gao ◽  
Yan Liu Wang ◽  
Xu Dong Wang

The influence of Al-10RE addition, holding time and holding temperature on the microstructures and mechanical properties of ZL203 aluminum alloy has been studied respectively through using the optical microscope and the universal mechanical testing machine. The experimental results lead to the following conclusions. When Al-10RE addition is 1.0%-1.5%, the holding time is 15 minutes and the holding temperature is 730°C-750°C, the microstructure of Zl203 is perfect. With the increase of Al-10RE addition, the mechanical properties including tensile strength, elongation rate and hardness gradually increase. When the Al-10RE addition is 1.0%-1.5%, the mechanical properties reaches maximum. When the Al-10RE addition is above 1.5%, the mechanical properties decrease with the increase of Al-10RE addition.


2019 ◽  
Vol 956 ◽  
pp. 229-236
Author(s):  
Jian Lin Xu ◽  
Zhou Chen ◽  
Lei Niu ◽  
Cheng Hu Kang ◽  
Xiao Qi Liu

In this paper, Sb2O3/PP composite specimens were prepared by ball milling and melt blending. The effects of Sb2O3 particle size and filling amount on the toughening, reinforcing effect and crystallinity of PP composites were analyzed by notch impact test, tensile test, SEM, XRD and DSC characterization. The experimental results show that the filling of Sb2O3 particles can improve the mechanical properties and crystallization properties of Sb2O3/PP composites. With the increase of filling amount of Sb2O3 particles, the tensile strength and impact strength of Sb2O3/PP composite increased first and then decreased. When the content of Sb2O3 is 2 wt.%, the tensile strength and impact strength of Sb2O3/PP composites reach the maximum. When the filling amount is the same, the crystallization and mechanical properties of nanoSb2O3/PP composites are better than those of micron Sb2O3/PP composites.


2018 ◽  
Vol 8 (12) ◽  
pp. 2439 ◽  
Author(s):  
Yong Gao ◽  
Mingzhuo Zhou

Additive manufacturing (AM) nickel-based superalloys have been demonstrated to equate or exceed mechanical properties of cast and wrought counterparts but their tribological potentials have not been fully realized. This study investigates fretting wear behaviors of Inconel 625 against the 42 CrMo4 stainless steel under flat-on-flat contacts. Inconel 625 is prepared by additive manufacturing (AM) using the electron beam selective melting. Results show that it has a high hardness (335 HV), superior tensile strength (952 MPa) and yield strength (793 MPa). Tribological tests indicate that the AM-Inconel 625 can suppress wear of the surface within a depth of only ~2.4 μm at a contact load of 106 N after 2 × 104 cycles. The excellent wear resistance is attributed to the improved strength and the formation of continuous tribo-layers containing a mixture of Fe2O3, Fe3O4, Cr2O3 and Mn2O3.


2012 ◽  
Vol 602-604 ◽  
pp. 448-451
Author(s):  
Biao Guo ◽  
Sui Cai Zhang ◽  
Chuan Shui Sun ◽  
Chang Chun Ge

Sintered and forged powder metallurgy (P/M) steels were subjected to tensile, hardness and impact test, in order to understand the influence of the microstructure on the mechanical properties and fracture behavior. Ultimate tensile strength, yield strength, elongation, reduction in area, hardness and impact toughness all increase with a decrease in porosity. With the increase of density, the mode of fracture change from pure ductile in sintered necks of the material to complete brittle from fully dense pearlitic grains.


2020 ◽  
pp. 096739112098276
Author(s):  
Bilal Kursuncu ◽  
Azmi Erdogan ◽  
M Sabri Gok ◽  
Bilal Demirel

In this study, the change of mechanical properties by adding iron scales of different sizes into polypropylene (PP) was investigated. The iron scale was obtained from a steel production plant and adjusted to 30, 50, 90, 120, and 150 µm grain sizes. These iron scales were then added to the polymer material at a rate of 5% by weight. Wear and tensile strength tests were applied to the samples, which were formed in two different types. According to the results obtained, the wear and tensile strength of polymer material in all grain sizes were improved with an added iron scale. It was observed that the wear resistance of the composite material formed with the addition of fine-grained reinforcing element was the highest. Although grain size increased with increasing tensile strength, wear resistance did not increase. Besides, the friction coefficient was measured to be lower at increasing load. While the effective wear mechanism in pure polymer material is plastic deformation, this wear mechanism has not been found in composite materials with different grain sizes. In this study, it has been shown that iron scales have a positive effect on the mechanical properties of polymer composites.


2015 ◽  
Vol 808 ◽  
pp. 28-33 ◽  
Author(s):  
Constantin Dulucheanu ◽  
Nicolai Bancescu ◽  
Traian Severin

In this article, the authors have analysed the influence of quenching temperature (TQ) on the mechanical properties of a dual-phase steel with 0.094 % C and 0.53% Mn. In order to obtain a ferrite-martensite structure, specimens of this material have been the subjected to intercritical quenching that consisted of heating at 750, 770, 790, 810 and 830 °C, maintaining for 30 minutes and cooling in water. These specimens have then been subjected to metallographic analysis and tensile test in order to determine the volume fraction of martensite (VM) in the structure, ultimate tensile strength (Rm), the 0.2% offset yield strength (Rp0.2), the total elongation (A5) and the Rp0.2/Rm ratio.


Sign in / Sign up

Export Citation Format

Share Document