The Significance of Fin Profile and Convective-Radiative Fin Tip on Temperature Distribution in a Longitudinal Fin

2019 ◽  
Vol 26 ◽  
pp. 93-105
Author(s):  
Partner Luyanda Ndlovu

In this article, the one dimensional nonlinear transient heat transfer through fins of rectangular, convex parabolic and concave parabolic is studied using the two dimensional Differential Transform Method (2D DTM). The thermal conductivity and heat transfer coefficient are modeled as linear and power law functions of temperature respectively. The fin tip dissipate heat to the ambient temperature by convection and radiation. A comparison is made between the proposed convectiveradiative fin tip boundary condition and the adiabatic (insulated) fin tip boundary condition which is widely used in literature. It is found that the fin with a convective-radiative tip dissipates heat to the ambient fluid at a faster rate when compared to a fin with an insulated tip. The results further show that the longitudinal fins of parabolic profiles dissipate more heat when compared to the conventional rectangular fin profile. The accuracy of the analytical method is demonstrated by comparing its results with those generated by an inbuilt numerical solver in MATLAB. Furthermore, a wide range of thermo-physical parameters are studied and their impact on the temperature distribution are illustrated and explained.

2020 ◽  
Vol 401 ◽  
pp. 1-13
Author(s):  
Luyanda Partner Ndlovu ◽  
Raseelo Joel Moitsheki

In this article, heat transfer through a moving fin with convective and radiative heat dissipation is studied. The analytical solutions are generated using the two-dimensional Differential Transform Method (2D DTM) which is an analytical solution technique that can be applied to various types of differential equations. The accuracy of the analytical solution is validated by benchmarking it against the numerical solution obtained by applying the inbuilt numerical solver in MATLAB ($pdepe$). A good agreement is observed between the analytical and numerical solutions. The effects of thermo-physical parameters, such as the Peclet number, surface emissivity coefficient, power index of heat transfer coefficient, convective-conductive parameter, radiative-conductive parameter and non-dimensional ambient temperature on non-dimensional temperature is studied and explained. Since numerous parameters are studied, the results could be useful in industrial and engineering applications.


Author(s):  
Mohammad Reza Hajmohammadi ◽  
Seyed Salman Nourazar ◽  
Ali Habibi Manesh

A new algorithm is proposed based on semi-analytical methods to solve the conjugate heat transfer problems. In this respect, a problem of conjugate forced-convective flow over a heat-conducting plate is modeled and the integro-differential equation occurring in the problem is solved by two lately-proposed approaches, Adomian decomposition method and differential transform method. The solution of the governing integro-differential equation for temperature distribution of the plate is handled more easily and accurately by implementing Adomian decomposition method/differential transform method rather than other traditional methods such as perturbation method. A numerical approach is also performed via finite volume method to examine the validity of the results for temperature distribution of the plate obtained by Adomian decomposition method/differential transform method. It is shown that the expressions for the temperature distribution in the plate obtained from the two methods, Adomian decomposition method and differential transform method, are the same and show closer agreement to the results calculated from numerical work in comparison with the expression obtained by perturbation method existed in the literature.


Author(s):  
Sharif Ullah ◽  
Amir Ali ◽  
Zia Din

The aim of this work is to enhance the heat transfer and study the efficiency of stretching/shrinking, radiating and rectangular fins. The effect of the dimensionless parameters, that is, radiation-conduction, convection-conduction stretching, thermo-geometric parameters as well as the Peclet number, and surface temperature are investigated on the efficiency of stretching/shrinking and rectangular fins. The considered model is studied analytically using Differential Transform Method (DTM). The result is analyzed with the numerical solution for the accuracy of the semi-analytical solution, where good agreement is obtained. The impact of the considered parameters is studied numerically on the temperature distribution, fin’s tip temperature, and the efficiency of the fin, where the combined effects of radiation and stretching/ shrinking enhance the system in the heat transfer with better efficiency. The shrinking of the fin with radiation increases the efficiency as compared to stretching with radiation is observed, which plays a significant role in mechanical engineering.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1285-1297 ◽  
Author(s):  
Nabil El-Dabe ◽  
Galal Moatimid ◽  
Abd-Elhafez Elshekhipy ◽  
Naglaa Aballah

The present study examines the motion of a micropolar non-Newtonian Casson fluid through a porous medium over a stretching surface. The system is pervaded by an external uniform magnetic field. The heat transfer and heat generation are taken into consideration. The problem is modulated mathematically by a system of non-linear PDE which describe the equations of continuity, momentum, and energy. Suitable similarity solutions are utilized to transform the system of equation ordinary non-linear differential equations. In accordance with the appropriate boundary conditions, are numerically solved by means of the finite difference technique. Also, the system is solved by using multistep differential transform method. The effects of the various physical parameters, of the problem at hand, are illustrated through a set of diagrams.


Author(s):  
Jaideep Dutta ◽  
S. Narendranath ◽  
Aleksandr Zhilin

This article reveals a detailed study of temperature cycle formed during Gas Tungsten Arc welding of high carbon steel (AISI 1090) butt joints. Experimental work has been carried out to estimate the temperature distribution along fusion boundary to longitudinal direction of the weldment by mounting thermocouples on the plate along with Data Acquisition System. Heat flux distribution due to moving point heat source has been demonstrated by implementing Gaussian surface heat flux and Angular Torch model. Cooling rate has predicted by application of Adams cooling rate equation. Conduction-convection phenomena plays dominant role for evaluating heat loss from the weld joint and Differential Transform Method (DTM) has been applied to judge non-dimensional temperature distribution. Analytical studies has shown well agreement with experimental temperature distribution.


Author(s):  
A. Y. Gunes ◽  
G. Komurgoz ◽  
A. Arikoglu ◽  
I. Ozkol

The energy crisis in the last two decades has turned the attention of scientific and engineering communities to redesigned and developed heat-fluid interaction systems. All of the details in analyses are reconsidered to reduce energy consumption. The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow over a single rotating disk. The flow due to rotating disks is of great interest in thermal engineering as it appears in many industrial and engineering applications such as gas turbine engines and micropumps. The related equation of flow, which is nonlinear and coupled, and heat transfer governing equations are reduced to ordinary differential equations by applying the so-called classical approach which was first introduced by Von Karman. Instead of this approach, a pure numerical one, the recently developed popular semi numerical analytical technique differential transform method (DTM), with Benton transformation, is employed to solve the reduced governing equations under the assumptions of velocity-slip and temperature jump conditions on the disk surface. The solution is valid for continuum and slip-flow regime which has a Knudsen number smaller than 0.1. The results attained for various physical cases are interpreted by using non-dimensional parameters related to flow and temperature fields. Velocity and temperature profiles are presented graphically. The effect of various parameters such as the Knudsen Number (Kn), Reynolds Number (Re) and Nusselt Numbers (Nu) are examined. The observed physical consequences are the velocity slip and temperature jump at the wall becoming strongly dependant on the Knudsen number. It is also observed that the temperature jump and velocity jump conditions have nonlinear effects on slip; these effects are investigated with great details and presented graphically.


2017 ◽  
Vol 22 (1) ◽  
pp. 123-144 ◽  
Author(s):  
K.V. Prasad ◽  
P. Mallikarjun ◽  
H. Vaidya

Abstract The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux). The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM) and regular perturbation method (PM). The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM) and regular perturbation method (PM) methods shows the versatility of the Differential Transform Method (DTM). The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.


Sign in / Sign up

Export Citation Format

Share Document