scholarly journals A Computational Study on the Role of Parameters for Identification of Thyroid Nodules by Infrared Images (and Comparison with Real Data)

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.

Author(s):  
Luca Andrei ◽  
Antonio Andreini ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Stefano Zecchi

A numerical study of a state of the art leading edge cooling scheme was performed to analyze the heat transfer process within the leading edge cavity of a high pressure turbine airfoil. The investigated geometries account a trapezoidal supply channel with a large racetrack impingement holes. The coolant jets, confined among two consequent large fins, impact the leading edge internal surface and it is extracted from the leading edge cavity through both showerhead holes and film cooling holes. The CFD setup has been validated by means of the experimental measurements performed on a dedicated test rig developed and operated at University of Florence. The aim of this study is to investigate the combined effects of jet impingement, mass flow extraction and fins presence on the internal heat transfer of the leading edge cavity. More in details, the paper analyses the impact, in terms of blade metal temperature, of large fins presence and positioning. Jet’s Reynolds number is varied in order to cover the typical engine conditions of these cooling systems (Rej = 20000 – 40000).


2007 ◽  
Vol 12 (4) ◽  
pp. 541-552 ◽  
Author(s):  
M. Sankar ◽  
M. Venkatachalappa

A numerical study is conducted to understand the effect of surface tension on buoyancy driven convection in a vertical cylindrical annular cavity filled with a low Prandtl number fluid. The inner and outer cylinders are maintained at different uniform temperatures and the horizontal top and bottom walls are thermally insulated. The upper free surface is assumed to remain flat and non-deformable. A finite difference scheme consisting of the Alternating Direction Implicit method and the Successive Line Over Relaxation method is used to solve the vorticity stream function formulation of the problem. Detailed numerical results of heat transfer rate, temperature and velocity fields have been presented for a wide range of physical parameters of the problem. The flow pattern and temperature distribution in the annular cavity are presented by means of contour plots of streamlines and isotherms. The rate of heat transfer is estimated by evaluating the average Nusselt number. Further, the present numerical results are compared with the existing results and are found to be in good agreement.


2021 ◽  
Author(s):  
José R. González Montero ◽  
Charbel Damião ◽  
Maira B. H. Moran ◽  
Cristina A. P. Fontes ◽  
Rubens Cruz Filho ◽  
...  

AbstractAccording to experts and medical literature, a healthy thyroid gland, or a thyroid containing benign nodules, tend to be less inflamed and less active than one with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and it may be related to the maintenance of high and constant temperatures. Investigation of these characteristics, detectable by infrared sensors, and answering if they constitute patterns of malignancy are the aims of this work. Experiments considering biological heat transfer analysis by Finite Element numerical simulations are used to show the influence of nodule and patient characteristics on the identification of malignancy of thyroid nodule by thermography. The used and approved protocol for infrared examination are analyzed and simulated during all its phase that is on transient and steady state behavior, in order to verify how and when their influence can be really recognized in patients. Simulation results and the analysis of infrared exams show that the tissues between the skin and the thyroid, as well as the nodule size, have influence in superficial temperatures. Other thermal parameters of thyroid nodules are also investigated and show little influence on surface temperatures. These characteristics must be considered in nodular infrared analysis and diagnosis by thermography. The infrared examinations of patients that meet the hypotheses related to the vascularization of the nodule confirm the numerical results. All details of the physical parameters used in the simulations, characteristics of the nodules, and their complete thermal examinations are public and available, turning possible that the presented simulation could be compared with other types of heat transfer solutions. This study is a concrete contribution to the answer of under what conditions thermography can be useful in the identification of thyroid nodules.Author summaryThyroid nodules are very common health problems. These nodules may have different characteristics, and some of them could influence the temperature of the region. Many works in the medical literature report that the healthy thyroid and even benign nodules tend to be less inflamed and active than malignant nodules and therefore should exhibit some variation in patterns of behavior related to the temperature variation between them. The focus of this work is to analyze some parameters of the nodules and details of the patients that can influence the identification and diagnosis of thyroid nodules by infrared images. To reach the objective, simulations of bioheat transfer in the neck (using a simple neck geometry and Finite Elements Analysis in COMSOL Multiphysics Software) and real infrared examinations (performed with a FLIR Infrared Camera model SC620 and a proposed protocol) were analyzed. Our results show the thermal insulation effect of the neck fat tissue, and that the effect of nodule sizes can be decremented by a thicker layer of fat. The analysis of the nodule parameters as blood perfusion rate and metabolic heat, which could be related with the nodule vascularization (an important condition related with malignancy), suggest that the thermal effects of thyroid nodules on the neck surface are not sufficient to differentiate benign from malign, and for this other features or methods must be considered.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


2011 ◽  
Vol 228-229 ◽  
pp. 676-680 ◽  
Author(s):  
Ye Tian ◽  
Xun Liang Liu ◽  
Zhi Wen

A three-dimensional mathematic model is developed for a 100kw single-end recuperative radiant tube and the simulation is performed with the CFD software FLUENT. Also it is used to investigate the effect of distance between combustion chamber exit and inner tube on heat transfer process. The results suggest that the peak value of combustion flame temperature drops along with the increasing of distance, which leads to low NOX discharging. Also radiant tube surface bulk temperature decreases, which causes radiant tube heating performance losses.


2021 ◽  
Author(s):  
Qi Li ◽  
Sijun Zhang

Abstract Under hypersonic flight conditions, a vehicle travelling through the atmosphere could excite the air that flows around the body to very high temperatures as the kinetic energy of the vehicle is dissipated to the gas. Depending on the flight velocity, various chemical reactions will be produced behind a shock wave for stagnation region. These reactions greatly change the properties of air and cause considerable deviation from those of a thermally and calorically perfect gas. A vehicle flying through the higher altitude of the atmosphere at high velocities may also experience thermal non-equilibrium since the lower density reduces the collision frequency and the high velocity results in smaller transit times for the air molecules. Under such extremely thermal circumstances, the heat transfer by convection and radiation around a vehicle has been one of key issues for thermal protection system (TPS). In this paper, the computational aerothermodynamics with fully coupled radiative heat transfer is developed. To validate the proposed approach, it is employed to simulate the thermal and chemical nonequilibrium flows over Stardust. The computed results on the reentry space vehicle reveal both of convective flux and radiative flux are in good agreements with other predicted results.


2019 ◽  
Vol 392 ◽  
pp. 123-137 ◽  
Author(s):  
Mohamed A. Medebber ◽  
Abderrahmane Aissa ◽  
Mohamed El Amine Slimani ◽  
Noureddine Retiel

The two dimensional study of natural convection in vertical cylindrical annular enclosure filled with Cu-water nanofluid under magnetic fields is numerically analyzed. The vertical walls are maintained at different uniform hot and cold temperatures, THand TC, respectively. The top and bottom walls of the enclosure are thermally insulated. The governing equations are solved numerically by using a finite volume method. The coupling between the continuity and momentum equations is effected using the SIMPLER algorithm. Numerical analysis has been carried out for a wide range of Rayleigh number (103≤Ra≤106), Hartmann number (1 ≤Ha≤100) and nanoparticles volume fraction (0 ≤φ≤0.08). The influence of theses physical parameters on the streamlines, isotherms and average Nusselt has been numerically investigated.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 206
Author(s):  
Gerzhova ◽  
Blanchet ◽  
Dagenais ◽  
Côté ◽  
Ménard

Currently, green roof fire risks are not clearly defined. This is because the problem is still not well understood, which raises concerns. The possibility of plants catching fire, especially during drought periods, is one of the reasons for necessary protection measures. The potential fire hazard for roof decks covered with vegetation has not yet been fully explored. The present study analyzes the performance of green roofs in extreme heat conditions by simulating a heat transfer process through the assembly. The main objective of this study was to determine the conditions and time required for the roof deck to reach a critical temperature. The effects of growing medium layer thickness (between 3 and 10 cm), porosity (0.5 to 0.7), and heating intensity (50, 100, 150, and 200 kW/m²) were examined. It was found that a green roof can protect a wooden roof deck from igniting with only 3 cm of soil coverage when exposed to severe heat fluxes for at least 25 minutes. The dependency of failure time on substrate thickness decreases with increasing heating load. It was also found that substrate porosity has a low impact on time to failure, and only at high heating loads.


Sign in / Sign up

Export Citation Format

Share Document