Influence of Oxygen Plasma Treatment on Impact Behaviors of Carbon Fibers-Reinforced Composites

2007 ◽  
Vol 119 ◽  
pp. 159-162 ◽  
Author(s):  
Soo Jin Park ◽  
Jin Seok Oh ◽  
Jae Rock Lee ◽  
Kyong Yop Rhee

In this work, effects of the oxygen plasma on surface characteristics of carbon fibers were investigated in impact strengths of the carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by acid-base values, FT-IR, and X-ray photoelectron spectroscopy (XPS). Also, the mechanical properties of the composites were studied in impact strength measurements. As experimental results, the O1S/C1S ratio of the carbon fiber surfaces treated by oxygen plasma was increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. The mechanical properties of the composites, including impact strength had been improved in the oxygen plasma on fibers. These results indicate that the oxygen plasma can lead to an increase in the adhesion between fibers and matrix in a composite system.

2020 ◽  
Vol 869 ◽  
pp. 474-480
Author(s):  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
Elena V. Rzhevskaya ◽  
Azamat Zhansitov ◽  
Svetlana Yu. Khashirova

The article presents the results of a study of the effect of milled and chopped carbon fibers, with an average particle length of 0.2 and , respectively, on the mechanical properties of polyphenylene sulfide and its heat resistance. It was found that the introduction of carbon fibers leads to a significant decrease in the melt flow rate. It was shown that after a sharp decrease in impact strength at 10 % content of carbon fibers, its inverse improvement occurs with an increase in the filler content. Composites containing carbon fibers with length demonstrate higher impact strength. The introduction of a filler leads to a significant increase in the elastic modulus and strength of polyphenylene sulfide and its heat resistance.


2021 ◽  
Vol 2021 ◽  
pp. 102-108
Author(s):  
J. Domenech-Pastor ◽  
P. Diaz-Garcia ◽  
D. Garcia

Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.


2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2498 ◽  
Author(s):  
Miran Mozetič

Super-hydrophilicity is a desired but rarely reported surface finish of polymer materials, so the methods for achieving such a property represent a great scientific and technological challenge. The methods reported by various authors are reviewed and discussed in this paper. The super-hydrophilic surface finish has been reported for polymers functionalized with oxygen-rich surface functional groups and of rich morphology on the sub-micrometer scale. The oxygen concentration as probed by X-ray photoelectron spectroscopy should be above 30 atomic % and the roughness as determined by atomic force microscopy over a few nm, although most authors reported the roughness was close to 100 nm. A simple one-step oxygen plasma treatment assures for super-hydrophilicity of few polymers only, but the technology enables such a surface finish of almost any fluorine-free polymer providing a capacitively coupled oxygen plasma that enables deposition of minute quantities of inorganic material is applied. More complex methods include deposition of at least one coating, followed by surface activation with oxygen plasma. Fluorinated polymers require treatment with plasma rich in hydrogen to achieve the super-hydrophilic surface finish. The stability upon aging depends largely on the technique used for super-hydrophilization.


2009 ◽  
Vol 1244 ◽  
Author(s):  
Tadeusz Hryniewicz ◽  
Krzysztof Rokosz ◽  
Ryszard Rokicki

ABSTRACTThe purpose of the study was to reveal the effects of a new electropolishing process carried out under a constant magnetic field, termed as magnetoelectropolishing (MEP). In this work we investigated Nitinol rotary endodontic instruments by surface and morphology change after MEP. The MEP process greatly affects both surface also mechanical properties like the bending and fatigue resistance.The investigation covered surface interferometry measurements, X-ray Photoelectron Spectroscopy (XPS) studies, and Scanning Electron Microscopy (SEM) with EDAX studies referred to two groups of endodontic instruments: ready-to-use or as-received (AR) files, and magnetoelectropolished (MEP) instruments, in comparison with the instruments surface after a conventional electropolishing (EP). The treated surfaces of NiTi endodontic files were studied by interferometric method in view of getting multiple surface characteristics, together with digital data concerning the arithmetic mean height Sa and the maximum height of scale limited surface Sz.The investigation results obtained have indicated a considerable improvement of MEP surface in comparison with both AR and EP surfaces. Such a surface after MEP reveals several positive features, decreased roughness, elimination of metallic state (here Ni and Ti elements) in the surface film, much enriched with titanium oxides and diminished nickel oxides. The study results show that the contents of Ni compounds is higher after EP (18.3%) than after MEP (10.2%), whereas the contents of Ti compounds is higher after MEP (83.4%) than after EP (76.6%). The total Ti/Ni ratio indicates almost double surpass of titanium over nickel in the surface film after MEP in comparison with the total amount of that ratio after EP.The qualitative investigation of fatigue tests have indicated much better performance of NiTi endodontic file samples after MEP than those related to AR and/or after EP. We have proved that the magnetoelectropolishing process may further modify surface. The following studies are to be directed onto performance and specific mechanical properties of the endodontic files at work.


Sign in / Sign up

Export Citation Format

Share Document