Effect of Colloidal Silica Contents in the Organic-Inorganic Hybrid Coatings on the Physical Properties of the Film on the Metal Surface

2007 ◽  
Vol 124-126 ◽  
pp. 655-658
Author(s):  
Do Hyun Kim ◽  
Hyung Mi Lim ◽  
Sang Mok Kim ◽  
Byoung Man Kim ◽  
Dae Sung Kim ◽  
...  

The coatings composed of colloidal silica, methyltrimethoxy silane (MTMS), water, and acid catalysts have been prepared with variation of colloidal silica contents from 0 to 20 %. All the coatings were prepared and coated on the aluminum plate under the same condition except the contents of colloidal silica, and the compensating contents of MTMS and water with fixed molar ratio of MTMS and water to be 3. The physical properties were compared in terms of hardness, adhesion strength, corrosion, wear resistance, and thermo gravimetry analysis, etc. The pencil hardness was drastically increased with the addition of 5% colloidal silica particles and was further increased slightly by increase of additional silica. The corrosion resistance of the coating film against alkali solution was improved by increasing colloidal silica content, however, the acid resistance was less affected by the content of colloidal silica.

2012 ◽  
Vol 557-559 ◽  
pp. 1797-1802
Author(s):  
Xiao Ying Sun ◽  
Jianan Wang ◽  
Jian Zhong Hang ◽  
Lu Jiang Jin ◽  
Li Yi Shi

Hybrid sols were synthesized through a combination of hydrolysis and condensation reactions of tetraetoxysilane and γ-Methacryloxypropyltrimethoxysilane together with the addition of a colloidal silica suspension. A transparent, hard UV-curable hybrid coatings based on hybrid sols were prepared in order to improve the scratch and abrasion resistance of PMMA substrate. The effects of the content of colloidal silica suspension on pencil hardness, transmittance, and haze were investigated. The pencil hardness of all coating films in this study can be tuned from 4H to 9H, whereas that of uncoated PMMA substrate is 1H. The higher hardness of the coatings can be attributed to the dense structure induced by the increase of network density with the addition of colloidal silica suspension. Furthermore, it is found that the transmittance of coatings slightly fluctuates between 91.8% and 93.6% with increasing colloidal silica content. These results indicate the good compatibility of the organic and inorganic components.


2015 ◽  
Vol 659 ◽  
pp. 570-574 ◽  
Author(s):  
Apinya Musidang ◽  
Nantana Jiratumnukul

UV-curable process is widely used for paints, inks and adhesives due to its rapid curing, low energy consumption, high efficiency and low volatile organic compounds (VOCs). The objective of this research is to prepare poly(lactic acid) (PLA) based UV-curable coating by using glycolyzed PLA. PLA was glycolyzed by ethylene glycol (EG) at 170°C for 90 minutes. The obtained glycolyzed PLA was reacted with methacrylic anhydride (MAAH) to provide PLA acrylate oligomer. The obtained PLA acrylate oligomer was used in coating formulations with various amounts of photoinitiator and cured under UV radiation. Physical properties of cured coating film were investigated such as pencil hardness, gloss and haze. The results showed that poly(lactic acid) (PLA) based UV-curable coating provided good physical properties.


Alloy Digest ◽  
1988 ◽  
Vol 37 (7) ◽  

Abstract TYPE CR MEEHANITE is an austenitic material especially designed to meet a wide variety of corrosion, wear and heat applications. Like other Meehanite materials it is produced under closely controlled procedures which result in desirable graphite form and distribution. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as heat treating, machining, and joining. Filing Code: CI-55. Producer or source: Meehanite Worldwide Corporation.


2021 ◽  
Author(s):  
Desheng Huang ◽  
Yunlong Li ◽  
Daoyong Yang

Abstract In this paper, techniques have been developed to quantify phase behaviour and physical properties including phase boundaries, swelling factors, and phase volumes for reservoir fluids containing polar components from both experimental and theoretical aspects. Experimentally, a total of five pressure-volume-temperature (PVT) experiments including three sets of DME/CO2/heavy oil systems and two sets of DME/CO2/water/heavy oil systems have been carried out to measure saturation pressures, phase volumes, and swelling factors by using a versatile PVT setup. Theoretically, the modified Peng-Robinson equation of state (PR EOS) incorporated with the Huron-Vidal mixing rule and the Péneloux volume-translation strategy is employed as the thermodynamic model to perform phase equilibrium calculations. It is observed that the experimentally measured saturation pressures of DME/CO2/water/heavy oil mixtures are higher than those of DME/CO2/heavy oil mixtures at the same temperature and same molar ratio of solvents and heavy oil, owing to the fact that more water molecules can be evaporated into vapour phase. The binary interaction parameters (BIPs) between DME/heavy oil and CO2/DME pair, which are obtained by matching the measured saturation pressures of DME/CO2/heavy oil mixtures, work well for DME/CO2/heavy oil mixtures in the presence and absence of water. In addition, a swelling effect of heavy oil can be enhanced by adding the DME and CO2 mixtures compared to only DME or CO2. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, swelling factors, phase volumes with a root-mean-squared relative error (RMSRE) of 4.68%, 0.71%, and 9.35%, respectively, indicating that it can provide fundamental data for simulating, designing, and optimizing the hybrid solvent-thermal recovery processes for heavy oil reservoirs.


2011 ◽  
Vol 217-218 ◽  
pp. 294-299
Author(s):  
Jian Yun He ◽  
Jin Ping Xiong ◽  
Bing Qian Xia

Epoxynorbornene linseed oil (ENLO) is a new kind of epoxide from renewable sources. An UV-curable organic/inorganic hybrid films using epoxynorbornene linseed oils (ENLO) and surface treated nano-silica were formulated. The mechanical properties,thermal properties and coating properties of the ENLO /silica coatings were evaluated as the function of nano-silica content. The results indicated that after incorporating the nano-silica, the strength, modulus and glass transition temperature of the hybrid films enhanced, while the elongation at break decreased. The nano-silica also improved the hybrid coating properties such as pencil hardness, solvent resistance and surface wetting properties. The morphology observation of the films by atomic force microscopy (AFM) showed that the average silica particle size was ~ 70 nm and the particles were well-dispersed in the organic phase.


2013 ◽  
Vol 14 (3) ◽  
pp. 219 ◽  
Author(s):  
Dwi Kartika ◽  
Senny Widyaningsih

Transesterification of waste cooking oil into biodiesel using KOH catalyst with and without esterification process usingactivated natural zeolite (ZAH) catalyst has been carried out. Activation of the zeolite was done by refluxing with HCl 6Mfor 30 min, followed calcining and oxydized at 500oC for 2 hours, consecutively. The transesterification without esterificationprocess were done using KOH catalyst 1% (w/w) from oil and methanol weight and oil/methanol molar ratio 1:6 at 60oC. Theesterification reaction was also done using ZAH catalyst then continued by transesterification using KOH catalyst inmethanol media. In order to study the effect of ZAH catalyst concentration at constant temperature, the catalysts werevaried, i.e. 0, 1, 2, and 3% (w/w). To investigate the effect of temperature, the experiments were done at various temperaturefrom 30, 45, 60, and 70oC at constant catalyst concentration. The conversion of biodiesel was determined by 1H-NMRspectrometer and physical properties of biodiesel were determined using ASTM standard methods. The results showedthat the transesterification using KOH catalyst without esterification produced biodiesel conversion of 53.29%. The optimumcondition of biodiesel synthesis via esterification process were reached at 60oC and concentration of ZAH catalyst of2% (w/w), that could give biodiesel conversion = 100.00%. The physical properties were conformed with biodiesel ASTM2003b and Directorate General of Oil and Gas 2006 specification.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Peng-peng Sun ◽  
Yuan-yuan Ren ◽  
Jie Zheng ◽  
Ai-jun Hu

Lectin from loach skin mucus plays an important role in pathogen defense. However, hardly can any paper relevant to the character of lectin from loach skin mucus be found in recent years. In this study, a kind of new lectin (LML), with a high hemagglutination activity of 166.23 × 103 HU/mg, was successfully isolated and purified from loach skin mucus. LML was a kind of glycoprotein with a molecular weight of 245 kDa. Also, the monosaccharide composition suggested that its carbohydrate chain was composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose with a molar ratio of 2.02 : 11.66 : 2.06 : 1.00 : 14.09 : 6.00. Besides, LML depended on Ca2+ to induce hemagglutination and was strongly inhibited by D-lactose. The lectin exhibited powerful resistance to alkali and kept about 30% hemagglutination activity at pH 14.0, whereas its capacity of acid resistance was weak. The maximum hemagglutination activity of LML maintained at a temperature range from 20°C to 50°C. Moreover, the structure of LML was preliminarily studied, indicating it contained abundant glutamic acid, histidine, and serine, and its secondary structure contained α-helix (4.97%), β-sheet (27.55%), turns structure (49.78%), and unordered structure (17.70%).


Sign in / Sign up

Export Citation Format

Share Document