Nano-Silica Reinforced UV-Curable Hybrid Hard Coatings on Polymethylmethacrylate (PMMA) Substrate

2012 ◽  
Vol 557-559 ◽  
pp. 1797-1802
Author(s):  
Xiao Ying Sun ◽  
Jianan Wang ◽  
Jian Zhong Hang ◽  
Lu Jiang Jin ◽  
Li Yi Shi

Hybrid sols were synthesized through a combination of hydrolysis and condensation reactions of tetraetoxysilane and γ-Methacryloxypropyltrimethoxysilane together with the addition of a colloidal silica suspension. A transparent, hard UV-curable hybrid coatings based on hybrid sols were prepared in order to improve the scratch and abrasion resistance of PMMA substrate. The effects of the content of colloidal silica suspension on pencil hardness, transmittance, and haze were investigated. The pencil hardness of all coating films in this study can be tuned from 4H to 9H, whereas that of uncoated PMMA substrate is 1H. The higher hardness of the coatings can be attributed to the dense structure induced by the increase of network density with the addition of colloidal silica suspension. Furthermore, it is found that the transmittance of coatings slightly fluctuates between 91.8% and 93.6% with increasing colloidal silica content. These results indicate the good compatibility of the organic and inorganic components.

2007 ◽  
Vol 124-126 ◽  
pp. 655-658
Author(s):  
Do Hyun Kim ◽  
Hyung Mi Lim ◽  
Sang Mok Kim ◽  
Byoung Man Kim ◽  
Dae Sung Kim ◽  
...  

The coatings composed of colloidal silica, methyltrimethoxy silane (MTMS), water, and acid catalysts have been prepared with variation of colloidal silica contents from 0 to 20 %. All the coatings were prepared and coated on the aluminum plate under the same condition except the contents of colloidal silica, and the compensating contents of MTMS and water with fixed molar ratio of MTMS and water to be 3. The physical properties were compared in terms of hardness, adhesion strength, corrosion, wear resistance, and thermo gravimetry analysis, etc. The pencil hardness was drastically increased with the addition of 5% colloidal silica particles and was further increased slightly by increase of additional silica. The corrosion resistance of the coating film against alkali solution was improved by increasing colloidal silica content, however, the acid resistance was less affected by the content of colloidal silica.


2011 ◽  
Vol 217-218 ◽  
pp. 294-299
Author(s):  
Jian Yun He ◽  
Jin Ping Xiong ◽  
Bing Qian Xia

Epoxynorbornene linseed oil (ENLO) is a new kind of epoxide from renewable sources. An UV-curable organic/inorganic hybrid films using epoxynorbornene linseed oils (ENLO) and surface treated nano-silica were formulated. The mechanical properties,thermal properties and coating properties of the ENLO /silica coatings were evaluated as the function of nano-silica content. The results indicated that after incorporating the nano-silica, the strength, modulus and glass transition temperature of the hybrid films enhanced, while the elongation at break decreased. The nano-silica also improved the hybrid coating properties such as pencil hardness, solvent resistance and surface wetting properties. The morphology observation of the films by atomic force microscopy (AFM) showed that the average silica particle size was ~ 70 nm and the particles were well-dispersed in the organic phase.


2021 ◽  
Vol 21 (8) ◽  
pp. 4450-4456
Author(s):  
Keuk-Min Jeong ◽  
Sung Soo Park ◽  
Saravanan Nagappan ◽  
Heekyung Jin ◽  
Guoquan Min ◽  
...  

In this study, highly transparent siloxane-based hybrid UV-curable coating materials were prepared using (acryloxypropyl)methylsiloxane monomer (APMS), a thiol-ene monomer, with benzoin ethyl ether. For the thiol-ene monomer, either pentaerythritol tetrakis(3-mercaptopropionate) (PETTMP) or trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) was used. The siloxane-based hybrid coating materials were highly transparent and hard (pencil hardness of 6–7H). The materials were also amphiphobic, with a water static contact angle of 92–100° and an oil contact angle of 46–63°, when prepared with a high siloxane-monomer-to-PETTMP/TMPTMP ratio. In general, both hybrid coating materials exhibited improved oleophobicity, high hardness, and surface smoothness with increasing siloxane content, although the TMPTMP-based hybrid coating films exhibited slightly higher oleophobicity (lower hydrophobicity) and a smoother surface than the PETTMP-based hybrid coating films.


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2015 ◽  
Vol 659 ◽  
pp. 570-574 ◽  
Author(s):  
Apinya Musidang ◽  
Nantana Jiratumnukul

UV-curable process is widely used for paints, inks and adhesives due to its rapid curing, low energy consumption, high efficiency and low volatile organic compounds (VOCs). The objective of this research is to prepare poly(lactic acid) (PLA) based UV-curable coating by using glycolyzed PLA. PLA was glycolyzed by ethylene glycol (EG) at 170°C for 90 minutes. The obtained glycolyzed PLA was reacted with methacrylic anhydride (MAAH) to provide PLA acrylate oligomer. The obtained PLA acrylate oligomer was used in coating formulations with various amounts of photoinitiator and cured under UV radiation. Physical properties of cured coating film were investigated such as pencil hardness, gloss and haze. The results showed that poly(lactic acid) (PLA) based UV-curable coating provided good physical properties.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Yaling Da ◽  
Jianxing Liu ◽  
Zixian Gao ◽  
Xiangxin Xue

In this work, a series of epoxy acrylate (EA)/mica composite coatings were synthesized through introducing mica powders of different particle size into epoxy acrylate coatings and using an ultraviolet (UV) curing technique to investigate the influence of mica particle size on the coatings. Mica powders of different particle sizes were obtained by ball-milling for 4, 8, 12, 16, and 20 h with a planetary high-energy ball mill. The particle size and morphologies of ball-milled mica powders were characterized by laser particle size analyzer and scanning electron microscopy (SEM). The results indicated that planetary ball-milling reduced the particle size of mica powders effectively. Mica powders that were un-ball-milled and ball-milled were added into the epoxy acrylate matrix by a blending method to synthesize the organic-inorganic UV curable coatings. The optical photographs of the coatings showed greater stability of liquid mixtures with smaller particle size fillers. The chemical structures of EA/mica composite coatings were investigated by Fourier transform infrared spectroscopy (FTIR), and the conversion rate of C=C bonds was calculated. The results indicated that the C=C conversion of coatings with mica powders of smaller particle sizes was higher. Tests of mechanical properties and tests using electrochemical impedance spectroscopy (EIS) showed that pencil hardness, impact resistance, and coating resistance were improved due to the reduction of mica powders particle size.


2021 ◽  
Author(s):  
Pundalik Mali ◽  
Narendra Sonawane ◽  
Nilesh Pawar ◽  
Vikas Patil

Abstract A novel melamine-phosphate trifunctional acrylate MPTO) was successfully synthesized via simple cyclization of hexamethylolmelamine (HMM) with phosphorous oxychloride (POCl3) followed by addition reaction of hydroxyethylmethacrylate (HEMA). The molecular structure of MPTO was identified by FTIR and 1H-NMR, 13C-NMR, and GC-MS spectra. The synthesized MPTO oligomer was impregnated with polyurethane acrylate to make the various formulation of UV-cured coatings. The polyurethanes-MPTO oligomers were coated on wood and galvanized steel panels. The properties of UV-cured PU-MPTO were studied by differential scanning calorimeter (DSC), while their crystallinity by X-ray diffraction analysis (XRD). The thermo-gravimetric analysis (TGA) exhibited a high char yield of 18.4% at 800 °C. Moreover, coating films show prominent flame retardancy with UL-94 V-0 rating and maximum limiting index value (LOI) values of 34.8%, which are much higher than the common polyurethane coatings. The polyurethane coatings cured with MPTO exhibited excellent mechanical properties were estimated various tests such as adhesion, pencil hardness, solvent resistance, flexibility, and corrosion test. The coating performance revealed that MPTO improves the mechanical, thermal, and flame retardant properties because their unique structure contains melamine-phosphate moiety and long aliphatic chains of an acrylate ester. These high-performance melamine-based UV-curable coatings are promising for extensive applications.


2007 ◽  
Vol 336-338 ◽  
pp. 2278-2281 ◽  
Author(s):  
Moon Kyong Na ◽  
Dong Pil Kang ◽  
Hoy Yul Park ◽  
Myeong Sang Ahn ◽  
In Hye Myung

Three kinds of colloidal silica (CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. Sol solutions were prepared from HSA CS/ methyltrimethoxysilane (MTMS), LS CS/MTMS and LS CS/MTMS/γ -Glycidoxypropyltri methoxysilane (ES) solutions. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. Coating films on glass, obtained from LS/MTMS sol, had high contact angle, also, much enhanced flat surface in the case of LS/MTMS sol was observed in comparison with HSA/ MTMS sol. From all sol-gel solutions, seasoning effect of for enhancing properties of sol-gel coating layer on glass was observed while such sol-gel solutions were left for 7days. In initial stage of sol-gel reaction, all most of sol solutions used in this work seem to be unstable, formation of coating films was a little hazy and rough. However, improved coating films as observed in 4days later. LS/MTMS/ES sol solutions were synthesized with ES, adding to LS/MTMS sol. Contact angle of LS/MTMS/ES sol-gel coating films decreased, since ES played a role in forming hydrophilic hydroxyl sol. The elastic portion of coating films prepared from LS/MTMS/ES sol increased with addition of ES, but thermal stability decreased a little.


2021 ◽  
Author(s):  
Wissal Jilani ◽  
Abdelfatteh Bouzidi ◽  
Albandary Almahri ◽  
Hajer Guermazi ◽  
Ibrahim Yahia

Abstract Various thickness of Rhodamine B (RhB) laser dye was deposited on epoxy polymeric as a new dielectric organic substrate by spin coating method for the first time. This study focused on the newly considered RhB dye on an epoxy substrate for wide-scale applications. The thickness effect on structural, optical, and dielectric properties of the hybrid coating films was performed. The XRD patterns of the films indicated a large hump amorphous design and lack of Bragg peak intensity associated with the RhB laser dye, due to amorphous film concentration. From UV-Visible spectroscopy, the optical absorption edge shifts to the higher wavelengths direction (redshift) with the variation in RhB dye thicknesses. It was found that the energy band gap decreased when the RhB dye film thickness changed. The refractive index is an important parameter influencing the optical component design. Their values vary according to each relationship that extremely useful the films in optical devices. Laser power attenuation sensitivity of pure epoxy polymeric substrate and its coating films shows that under reducing the thicknesses of RhB dye, the laser power intensity effect increases. Several dielectric parameters are extracted from the series and parallel capacitance measurements. The present results offer new material films for luminescent energy solar concentrator applications.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 675 ◽  
Author(s):  
Fei Cheng ◽  
Yunxin Fan ◽  
Lu Zhang ◽  
Xiaojiao Jiao ◽  
Guoqiao Lai ◽  
...  

UV–curable polyacrylate is widely used in free–radical type UV–cure coating systems, the disadvantages of which including poor thermal stability and UV resistance can be overcome through chemical modification by silicone. However, it is a remarkable fact that the strategies for fabrication UV–cured silicone modified polyacrylates are somewhat complicated and the price of the products may be much expensive than pure UV–cured polyacrylates. In this work, an easy fabrication method to prepare inexpensive UV–cured transparent silicone modified polyacrylate coatings with good adhesion and UV resistance performance was developed from copolymers of acylates and thiol silicone resin by UV initiated thiol–ene click reaction without UV initiator. The striking results with a high application value should be emphasized that when the amount of thiol silicone resin is only one wt.% of the copolymer of acrylates, the UV–cured coatings obtained exhibit fairly good performance. These coatings prepared exhibit transparency higher than 96% (800 nm), adhesion property to glass slides can reach grade 0, pencil hardness can reach 6H, water absorption is less than 0.16%. In particular, it is observed obviously that the silicone modified polyacrylate coatings exhibit better UV resistance performance than the coating prepared with only copolymers of acrylates initiated by UV initiator 1173. It is proved that it is actually an easy fabrication method to prepare inexpensive UV–cured transparent silicone modified polyacrylate coatings with high performance by UV initiated thiol–ene click reaction of copolymers of acylates and thiol silicone resin.


Sign in / Sign up

Export Citation Format

Share Document