Modeling of the Diffusion and Activation of Arsenic in Silicon Including Clustering and Precipitation

2007 ◽  
Vol 131-133 ◽  
pp. 277-282 ◽  
Author(s):  
Alberto Martinez-Limia ◽  
Peter Pichler ◽  
Christian Steen ◽  
Silke Paul ◽  
Wilfried Lerch

We have developed a diffusion and activation model for implanted arsenic in silicon. The model includes the dynamic formation of arsenic-vacancy complexes (As4V) as well as the precipitation of a SiAs phase. The latter is mandatory to correctly describe concentrations above solid solubility while the former are needed to describe the reduced electrical activity as well as the generation of self-interstitials during deactivation. In addition, the activation state after solid-phase epitaxy and the segregation at the interface to SiO2 are taken into account. After implementation using the Alagator language in the latest version of the Sentaurus Process Simulator of Synopsys, the parameters of the model were optimized using reported series of diffusion coefficients for temperatures between 700 °C and 1200 °C, and using several SIMS profiles covering annealing processes from spike to very long times with temperatures between 700 °C and 1050 °C and a wide distribution of implantation energies and doses. The model was validated using data from flash-assisted RTP and spike annealing of ultra-low energy arsenic implants.

2007 ◽  
Vol 994 ◽  
Author(s):  
Christoph Zechner ◽  
Dmitri Matveev ◽  
Nikolas Zographos ◽  
Victor Moroz ◽  
Bartek Pawlak

AbstractA new carbon-interstitial clustering model has been developed. The model has been implemented into the process simulator Sentaurus Process. Model parameters have been calibrated using fundamental marker layer experiments. B diffusion retardation in the C doped layer as well as Sb diffusion enhancement in the region close to a layer with high C concentration are successfully simulated. The calibrated model has been applied to simulations of ultra-shallow junction formation by high dose P-C and B-C co-implantation. It is assumed that, in regions which are amorphized by ion implantation and recrystallized by solid phase epitaxy, C is in the substitutional state right after the recrystallization. In contrast, in non-amorphized regions, C is assumed to be in clusters at the beginning of thermal annealing. A good agreement between simulation and experimental results has been achieved. The dependence of dopant diffusion on implanted C dose and spike annealing temperature has been reproduced.


1989 ◽  
Vol 55 (17) ◽  
pp. 1756-1758 ◽  
Author(s):  
J. B. Posthill ◽  
R. J. Markunas ◽  
T. P. Humphreys ◽  
R. J. Nemanich ◽  
K. Das ◽  
...  

2004 ◽  
Vol 95 (8) ◽  
pp. 4427-4431 ◽  
Author(s):  
B. C. Johnson ◽  
J. C. McCallum

1994 ◽  
Vol 12 (6) ◽  
pp. 3018-3022 ◽  
Author(s):  
André Rocher ◽  
André Oustry ◽  
Marie Josée David ◽  
Michel Caumont

1988 ◽  
Vol 100 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

ABSTRACTIon implantation of Ti into LINbO3 has been shown to be an effective means of producing optical waveguides, while maintaining better control over the resulting concentration profile of the dopant than can be achieved by in-diffusion. While undoped, amorphous LiNbO3 can be regrown by solid-phase epitaxy at 400°C with a regrowth velocity of 250 Å/min, the higher concentrations of Ti required to form a waveguide (∼10%) slow the regrowth considerably, so that temperatures approaching 800°C are used. Complete removal of residual damage requires annealing temperatures of 1000°C, not significantly lower than those used with in-diffusion. Solid phase epitaxy of Agimplanted LiNbO3, however, occurs at much lower temperatures. The regrowth is completed at 400°C, and annealing of all residual damage occurs at or below 800°C. Furthermore, the regrowth rate is independent of Ag concentration up to the highest dose implanted to date, 1 × 1017 Ag/cm2. The usefulness of Ag implantation for the formation of optical waveguides is limited, however, by the higher mobility of Ag at the annealing temperature, compared to Ti.


1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate

1992 ◽  
Vol 60 (1) ◽  
pp. 80-81 ◽  
Author(s):  
K. Kusukawa ◽  
M. Ohkura ◽  
M. Moniwa ◽  
M. Miyao

Sign in / Sign up

Export Citation Format

Share Document