Bulk Transition Elements Based Materials for Magnetic Cooling Application

2011 ◽  
Vol 170 ◽  
pp. 248-252 ◽  
Author(s):  
Mohamed Balli ◽  
Osmann Sari ◽  
L. Zamni ◽  
A. Robert ◽  
J. Forchelet ◽  
...  

In this paper we investigate the performances of two bulk magnetocaloric refrigerants based on La(Fe,Co)13-xSix and prepared by powder metallurgy. Both materials were developed especially for a magnetic cooling machine. We have determined the magnetocaloric effect in term of temperature change under magnetic field using a test-bench with practical running conditions. ΔT was measured under 2 T and close to room temperature range. The obtained results will be compared with those of some reference materials reported in the literature. In addition, a composite material based on La(Fe,Co)13-xSix is proposed for magnetic systems using Ericsson and AMR cycles for refrigeration close to room temperature.

Author(s):  
Amanie N. Abdelmessih ◽  
Paul W. Bartholomae ◽  
Matthew L. Casillas ◽  
Rocky E. DeLyon ◽  
Joshua F. Flaherty ◽  
...  

Traditionally, heat pumps and refrigerators utilize the vapor compression cycle to achieve cooling. These vapor compression cycles use hydrochlorofluorocarbons (R134a) as the cycle’s working fluid. This refrigerant contributes to global warming and is expected to be phased out. Consequently, new refrigerants as well as new refrigeration methods need to be developed. The research detailed in this article attempts to implement the magnetocaloric effect of gadolinium alloy in a designed apparatus to lower the temperature of air. Gadolinium alloy has a noticeable magnetocaloric effect within a strong magnetic field (5 T). This research is aimed at producing a noticeable temperature change (2–3 °C) in a relatively smaller magnetic field (1 T) produced with permanent magnets. This work tests the feasibility of magnetic cooling by introducing the design of a magnetic cooling apparatus, using Gadolinium alloy (Gd5Si2Ge2). Small pebbles were used as opposed to a solid plate in order to have an increased surface area to enhance the convection heat transfer process. Permanent magnets were used in the apparatus, to decrease the operating cost. The maximum temperature change encountered in the heat exchanger of the apparatus built was 2.3 °C in a 1 T magnetic field.


2020 ◽  
Vol 6 (3) ◽  
pp. 113-123
Author(s):  
Arnold S. Borukhovich

The results of the creation of a high-temperature spin injector based on EuO: Fe composite material are discussed. Their magnetic, electrical, structural and resonance parameters are given in a wide range of temperatures and an external magnetic field. A model calculation of the electronic spectrum of the solid solution Eu–Fe–O, responsible for the manifestation of the outstanding properties of the composite, is performed. The possibility of creating semiconductor spin electronics devices capable of operating at room temperature is shown.


2010 ◽  
Vol 168-169 ◽  
pp. 165-168
Author(s):  
Vasiliy D. Buchelnikov ◽  
Mikhail Drobosyuk ◽  
E.A. Smyshlyaev ◽  
O.O. Pavlukhina ◽  
A.V. Andreevskikh ◽  
...  

The magnetocaloric effect (MCE) in theNi2+xMn1-xGa (x = 0.33, 0.36, 0.39), Ni50Mn25In25, Ni54Mn21Ga18In7, Ni53.5Mn21.5Ga16In9, Ni45Co5Mn36.5In13.5 Heusler alloys and in the La0.7BayCa0.3-yMnO3 (y = 0.12, 0.24, 0.3) manganites at the Curie points have been measured by the direct method. For the magnetic field change H = 2 T, the maximal adiabatic temperature change Tad in the Ni2+xMn1-xGa alloys is larger than 0.6 K. For the Ni50Mn25In25 alloy the maximal value of Tad = 1.51 K (for the same magnetic field change H = 2 T) is observed at the magnetic phase transition temperature.


2007 ◽  
Vol 76 (13) ◽  
Author(s):  
Xixiang Zhang ◽  
Bei Zhang ◽  
Shuyun Yu ◽  
Zhuhong Liu ◽  
Wenjin Xu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sagar Ghorai ◽  
Ridha Skini ◽  
Daniel Hedlund ◽  
Petter Ström ◽  
Peter Svedlindh

Abstract La0.4Pr0.3Ca0.1Sr0.2MnO3 has been investigated as a potential candidate for room temperature magnetic refrigeration. Results from X-ray powder diffraction reveal an orthorhombic structure with Pnma space group. The electronic and chemical properties have been confirmed by X-ray photoelectron spectroscopy and ion-beam analysis. A second-order paramagnetic to ferromagnetic transition was observed near room temperature (289 K), with a mean-field like critical behaviour at low field and a tricritical mean-field like behaviour at high field. The field induced crossover in critical behaviour is a consequence of the system being close to a first-order magnetic transition in combination with a magnetic field induced suppression of local lattice distortions. The lattice distortions consist of interconnected and weakly distorted pairs of Mn-ions, where each pair shares an electron and a hole, dispersed by large Jahn–Teller distortions at Mn3+ lattice sites. A comparatively high value of the isothermal entropy-change (3.08 J/kg-K at 2 T) is observed and the direct measurements of the adiabatic temperature change reveal a temperature change of 1.5 K for a magnetic field change of 1.9 T.


2020 ◽  
Vol 6 (3) ◽  
pp. 113-123
Author(s):  
Arnold S. Borukhovich

The results of the creation of a high-temperature spin injector based on EuO: Fe composite material are discussed. Their magnetic, electrical, structural and resonance parameters are given in a wide range of temperatures and an external magnetic field. A model calculation of the electronic spectrum of the solid solution Eu–Fe–O, responsible for the manifestation of the outstanding properties of the composite, is performed. The possibility of creating semiconductor spin electronics devices capable of operating at room temperature is shown.


2015 ◽  
Vol 644 ◽  
pp. 215-218 ◽  
Author(s):  
P. Álvarez-Alonso ◽  
J. López-García ◽  
G. Daniel-Perez ◽  
D. Salazar ◽  
P. Lázpita ◽  
...  

We present a cost-effective and robust set-up designed to measure directly the magnetic field-induced adiabatic temperature change. The system uses a piston to introduce/remove the sample to/from the magnetic field (μ0∆His up to 1.7T) created by an ordinary electromagnet. The temperature of the sample is controlled by a double pipe heat exchanger operating by the electrical heater and air flow circulation from a Dewar with liquid nitrogen to the sample holder assembly.We have measured the adiabatic temperature change, ΔTad, of two polycrystalline samples: Gd and Ni50Mn35In15Heusler alloy. At the second-order magnetic phase transitions (18oC for Gd and 42oC for Ni50Mn35In15), ΔTadunder μ0∆H=1.7T are 3.8±0.1oC for Gd and 1.9±0.1oC for Ni50Mn35In15. The Heusler alloy shows an inverse magnetocaloric effect: ΔTadis-1.5±0.1oC on cooling and-1.6±0.1oC on heating at the martensitic transformation temperatures of ~24oC and ~29oC, respectively.


2019 ◽  
Vol 61 (4) ◽  
pp. 769
Author(s):  
Ю.В. Калетина ◽  
Е.Г. Герасимов ◽  
П.Б. Терентьев ◽  
А.Ю. Калетин

AbstractThe structure, electric properties, and magnetocaloric effect in Ni_47Mn_42In_11 ferromagnetic alloy in which the martensite transformation temperature is close to room temperature and nearly coincides with the austenite Curie temperature are studied. It is revealed that the spontaneous transformation of martensite to austenite is accompanied with the decrease by 45% in its resistivity. In the martensite transformation induced by a magnetic field, a negative magnetoresistance is observed; it reaches ≈15% in the magnetic field with a strength of 18 kOe. The temperature dependence of the maximum change in the entropy in the martensite transformation induced by the magnetic field was calculated by using the Clausius–Clapeyron equation. It is shown that the maximum values of the magnetoresistance and magnetocaloric effect are observed near the temperature of the spontaneous martensite transformation.


2013 ◽  
Vol 683 ◽  
pp. 56-59 ◽  
Author(s):  
Jian Hua Lin ◽  
Shan Dong Li ◽  
Li Li Wang ◽  
Jie Qiu ◽  
Zhi Yi Cai ◽  
...  

The room-temperature magnetocaloric effect (MCE) of Cox(MnSb)1-x (x=0.07, 0.15, 0.24) alloys has been investigated. It is revealed that the Curie temperature TC and the magnetic entropy change ΔSM are sensitive to the Co content x. When x=0.15, the MCE of Co0.15(MnSb)0.85 alloy is optimal with ΔSM=1.8 J/kg.K at 324 K under an applied magnetic field of 3 T. A second-order phase transformation occurs around TC, and the magnetic hysteresis loss thermal lag is negligible. These features demonstrate that Co0.15(MnSb)0.85 alloy is a promising room-temperature magnetocaloric materials.


Sign in / Sign up

Export Citation Format

Share Document