scholarly journals Ultra-Precision Machining of Off-Axis Asymmetric Large-area Reflecting Mirror Using ELID Grinding Process

Author(s):  
Myung-Won Jung ◽  
◽  
Gun-hwi Shin ◽  
Geon-Hee Kim ◽  
Hitoshi Ohmori ◽  
...  
2006 ◽  
Vol 2006.4 (0) ◽  
pp. 29-30
Author(s):  
Yutaka WATANABE ◽  
Hitoshi OHMORI ◽  
Weimin LIN ◽  
Yoshihiro UEHARA ◽  
Shin-ya MORITA ◽  
...  

2011 ◽  
Vol 175 ◽  
pp. 131-135
Author(s):  
Fu Qiang Tong ◽  
Fei Hu Zhang ◽  
Dian Rong Luan

TN85 cermets is one kind of particle reinforced metal matrix composites, which is high hardness, good wear resistance, and bring great difficulties in processing, so it is necessary to study the processing performance. During the test on ELID grinding TN85 cermets, it is found that plastic removal is the main ways during grinding TN85 cermets materials. The powder particle size of W2.5 diamond wheel is successfully used in full removal of TN85 cermets plastic, the surface roughness value of rms: 16.81nm and Ra: 12.52nm. The results showed that: ELID grinding wheel with diamond powder technology can be used in ultra-precision machining TN85 cermets.


2011 ◽  
Vol 487 ◽  
pp. 303-307
Author(s):  
Jia Liang Guan ◽  
H.W. Lu ◽  
X.H. Xiao ◽  
Y.C. Wu ◽  
Z.D. Chen

A new way of precision machining was studied through the experiments of Electrolytic In-Process Dressing (ELID) precision grinding and ultra precision lapping and polishing for W-Mo metal alloy. First a 22nm(Ra) surface was obtained through the ELID grinding, last a 11nm(Ra) surface was obtained after the process of lapping and polishing with 0.1~0.3 N/cm2pressure, 60~100 r/min rotational speed and other optimized parameters. Meanwhile, the formation mechanism of ultra precision mirror surface of the alloy was also analyzed. The experiments prove surface quality of the work piece was guaranteed by ELID grinding, and which was also greatly affected by some parameters in lapping and polishing such as pressure, rotational speed.


2011 ◽  
Vol 121-126 ◽  
pp. 1879-1885 ◽  
Author(s):  
Peng Guan ◽  
Ji Qiang Li ◽  
Shuang Zhu ◽  
Tian Biao Yu ◽  
Wan Shan Wang

Grinding is an important method for precision machining and ultra-precision grinding. It is used to generate parts with high surface finish, high form accuracy and surface integrity. In recent years, grinding technology in precision machining and ultra-precision machining of ceramics, glass and high-strength alloys and other hard materials has been applied widely. Grinding process is complex, once known as "black processing technology." Computer simulation is an important method to research the grinding mechanism and optimize the grinding process parameters. Especially in recent years as the development of computer calculation speed, the improvement of computer graphics theory and the gradual maturity of artificial intelligence technology, experts and scholars whose research subject related grinding had done a lot of work on grinding simulation. This paper gives an overview of the current state of the art in simulation of grinding processes: Physical simulation (material removal mechanism, grinding force, grinding temperature, etc.) and geometrical simulation (surface topography and surface integrity) are taken into account, and outlined with respect to their achievements in this paper. Furthermore, the capabilities and the limitations of the presented simulation approaches will be exemplified.


2014 ◽  
Vol 1027 ◽  
pp. 97-100 ◽  
Author(s):  
Jia Liang Guan ◽  
Xiao Hui Zhang ◽  
Ling Chen ◽  
Xin Qiang Ma

In order to explore the new way to precision machining of the cylindrical, ELID precision mirror grinding technology are employed to precision ultra-precision grinding experiments. Given ELID precision mirror grinding technology has effectively solved the basis of many of the typical flat-precision machining difficult materials and efficient processing, through the conversion process equipment tools, and optimization of process parameters, obtained when the wheel speed in 16 ~ 20 m / s, when the grinding depth 10μm, cylindrical grinding state is best, which could obtain Ra0.025μm surface roughness of the machined surface.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Chen-Yang Zhao ◽  
Chi-Fai Cheung ◽  
Wen-Peng Fu

In this paper, an investigation of cutting strategy is presented for the optimization of machining parameters in the ultra-precision machining of polar microstructures, which are used for optical precision measurement. The critical machining parameters affecting the surface generation and surface quality in the machining of polar microstructures are studied. Hence, the critical ranges of machining parameters have been determined through a series of cutting simulations, as well as cutting experiments. First of all, the influence of field of view (FOV) is investigated. After that, theoretical modeling of polar microstructures is built to generate the simulated surface topography of polar microstructures. A feature point detection algorithm is built for image processing of polar microstructures. Hence, an experimental investigation of the influence of cutting tool geometry, depth of cut, and groove spacing of polar microstructures was conducted. There are transition points from which the patterns of surface generation of polar microstructures vary with the machining parameters. The optimization of machining parameters and determination of the optimized cutting strategy are undertaken in the ultra-precision machining of polar microstructures.


2006 ◽  
Vol 532-533 ◽  
pp. 109-112
Author(s):  
Xun Lv ◽  
Ju Long Yuan ◽  
Dong Hui Wen ◽  
Qian Fa Deng ◽  
Fei Yan Lou

The high precision balls are requested in national defense, astronautics and high-tech commercial domain urgently. Conventional precision machining methods are sensitive to uniformity of abrasives and machining environment. After precision machining, there are easily to produce thick damaged layer on the ball surface because of machining stress and chemical conversion. On the basis of the floating polishing mechanism, a new scatheless ultra-precision polishing method of ball surface can solve the problems of abrasives uniformity effectively and damaged layer. In order to ensure that the new polishing method polishes ball surface equally, the appropriate angular velocities of the ball should be selected. This paper sets up the mathematical model about the motion of ball. By analyzing and simulating the relationship of the angular velocities, the best processing parameters are acquired.


Sign in / Sign up

Export Citation Format

Share Document