Synthesis of Titanium Carbide by Heat Treatment of TiH2 and Carbon Black Powders

2007 ◽  
Vol 534-536 ◽  
pp. 225-228 ◽  
Author(s):  
In Sup Ahn ◽  
Sung Yeal Bae ◽  
Ho Jung Cho ◽  
Chul Jin Kim ◽  
Dong Kyu Park

TiC cermet is widely used for working dies with a high hardness and tool materials. In this research, we attempted to produce submicron sized TiC powders from the ball milled TiH2 and carbon black mixture by thermal treatment. The titanium hydride and carbon composite powders were milled under argon atmosphere for 7 hours at various ball to powder ratios. At the initial stage, an increase in particle size was observed, and graphite phase disappered. The TiC phase of 300nm mean particle size was obtained by milling for 5 hours. As a result, its morphologies were excessively agglomerated. At the heat treating temperature of 500°C, TiH2 phase transformed to Ti completely and the complete TiC of lattice parameter 0.431 nm was formed when the temperature reached 1000°C. Metal matrix composites(MMCs) based on the Fe-TiC system can be synthesized by spark plasma sintering. Specimen formed sintering Fe-TiC powders display a microstructure of uniformly dispersed TiC grain in a continuous metal matrix.

2018 ◽  
Vol 7 (2.4) ◽  
pp. 117 ◽  
Author(s):  
Pranav Dev Srivyas ◽  
M S. Charoo

This review aims to explore the fundamental mechanical and tribological behavior Aluminum matrix composites (AMCs) reinforced with different reinforcements. Aluminum matrix composites are considered to be the new emerging class of materials which are having the tailored properties for specific applications. AMCs are the advanced engineering materials having superior properties as comparison to other conventional aluminum alloys. AMCs exhibits attractive properties such as high hardness, better yield strength, strength to weight ratio, high thermal conductivity, low coefficient of thermal expansion, superior wear and corrosion resistance. In recent times, because of these properties they have repealed keen interest for various potential applications in aerospace, automotive and various other structural applications.. Extensive research and development has been made in the Al-based MMCs with every possible alloy and different reinforcements so as to get the material of desired properties. By suitable use of different reinforcements in the Al metal matrix a wide range of properties combination can be obtained. The fundamental mechanical and tribological behavior of different reinforcements under dry and wet lubricated sliding conditions is recently being studied. It is reported that various reinforcement were successfully employed to decrease friction and wear in various applications. A comprehensive review is provided with the aim to analyze such properties of different reinforcements. 


1991 ◽  
Vol 238 ◽  
Author(s):  
R. Mitra ◽  
W. A. Chiou ◽  
J. R. Weertman ◽  
M. E. Fine ◽  
R. M. Aikin

ABSTRACTThe metal-ceramic interface in an XDTM Al/TiCp metal matrix composite has been characterized in as-extruded, recrystallized, and high temperature heat-treated conditions. In both the as-extruded and recrystallized composite, the interface is atomically abrupt. Localized orientation relationships exist between Al and Tic that lead to some degree of coherency at the interface. Recrystallization produces semicoherent interfaces by formation of subgrains in the Al adjacent to the Tie particles. Few interfaces show cracking, even after extensive deformation. Lack of cracking together with the direct contact down to atomic level, observed between the two phases are evidence for excellent bonding between the carbide particles and the aluminum matrix. Heat treating samples at 913 k for 24 hours produces reaction products like Al3Ti and Al4C3. These reactions are explained on the basis of thermodynamic data.


2020 ◽  
Vol 321 ◽  
pp. 11028
Author(s):  
S.V. Prikhodko ◽  
O.M. Ivasishin ◽  
P.E. Markovsky ◽  
D.G. Savvakin ◽  
O.O. Stasiuk

Due to the high specific strength of Ti, materials on its base are indispensable when high-strength and low-weight requests are a chief demand from the industry. Reinforcement of Ti-alloys with hard and light particles of TiC and TiB is a credible pathway to make metal matrix composites (MMC) with enhanced elastic moduli without compromising the material’s low-weight. However, reinforcement of the alloy with hard particles inevitably lowers the value of toughness and plasticity of material. Yet, in many applications simultaneous high hardness and high plasticity are not required through the entire structure. For instance, parts that need enhanced wear resistance or resistance upon ballistic impact demand high hardness and strength at the surface, whereas their core necessitates rather high toughness and ductility. Such combination of mechanical properties can be achieved on layered structures joining two and more layers of different materials with different chemical composition and/or microstructure within each individual layer. Multi-layered structures of Ti-6Al-4V alloy and its metal-matrix composites (MMC) with 5 and10% (vol.) of TiC and TiB were fabricated in this study using blended elemental powder metallurgy (BEPM) of hydrogenated Ti. Post-sintering hot deformation and annealing were sometimes also employed to improve the microstructure and properties. Structure of materials were characterized using light optical microscopy, scanning electron microscopy, electron backscattered diffraction, x-ray microscopy, tensile and 3-point flexural tests. The effect of various fabrication parameters was investigated to achieve desirable microstructure and properties of layered materials. Using optimized processing parameters, relatively large multilayered plates were made via BEPM and demonstrate superior anti-ballistic performance compared to the equally sized uniform Ti-6Al-4V plates fabricated by traditional ingot and wrought technology.


2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


Sign in / Sign up

Export Citation Format

Share Document