High-Temperature Optical Characterization of Transition Metal Dichalcogenides by Piezoreflectance Measurements

2012 ◽  
Vol 194 ◽  
pp. 158-161 ◽  
Author(s):  
Dumitru O. Dumcenco ◽  
Ying Sheng Huang ◽  
Kwong Kau Tiong ◽  
Andrei Colev ◽  
Corneliu Gherman ◽  
...  

A systematic optical characterization of transition metal dichalcogenide layered crystals grown by chemical vapour transport method as well as of natural molybdenite were carried out by using piezoreflectance (PzR) measurements. From a detailed lineshape fit of the room-temperature PzR spectra over an energy range from 1.6 to 5.0 eV, the energies of the band-edge excitonic and higher lying interband direct transitions were determined accurately. The possible assignments of the different origins of excitonic transitions are discussed. The near direct band edge A and B excitonic transitions detected in PzR spectra show a linear red-shift with the temperature increasing up to 525 K. The values of temperature-dependent energies of the excitonic transitions A and B are evaluated and discussed.

2020 ◽  
Vol 22 (47) ◽  
pp. 27845-27849
Author(s):  
Manoel L. da Silva-Neto ◽  
Renato Barbosa-Silva ◽  
Cid B. de Araújo ◽  
Christiano J. S. de Matos ◽  
Ali M. Jawaid ◽  
...  

Nonlinear optical characterization of nanostructured layered transition metal dichalcogenides (LTMDs) is of fundamental interest for basic knowledge and applied purposes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Förste ◽  
Nikita V. Tepliakov ◽  
Stanislav Yu. Kruchinin ◽  
Jessica Lindlau ◽  
Victor Funk ◽  
...  

Abstract The optical properties of monolayer and bilayer transition metal dichalcogenide semiconductors are governed by excitons in different spin and valley configurations, providing versatile aspects for van der Waals heterostructures and devices. Here, we present experimental and theoretical studies of exciton energy splittings in external magnetic field in neutral and charged WSe2 monolayer and bilayer crystals embedded in a field effect device for active doping control. We develop theoretical methods to calculate the exciton g-factors from first principles for all possible spin-valley configurations of excitons in monolayer and bilayer WSe2 including valley-indirect excitons. Our theoretical and experimental findings shed light on some of the characteristic photoluminescence peaks observed for monolayer and bilayer WSe2. In more general terms, the theoretical aspects of our work provide additional means for the characterization of single and few-layer transition metal dichalcogenides, as well as their heterostructures, in the presence of external magnetic fields.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Albert Bruix ◽  
Jeppe Vang Lauritsen ◽  
Bjork Hammer

Nanomaterials based on MoS2 and related transition metal dichalcogenides are remarkably versatile; MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and the hydrogen evolution reaction, and transition metal...


2020 ◽  
Vol 22 (25) ◽  
pp. 14088-14098
Author(s):  
Amine Slassi ◽  
David Cornil ◽  
Jérôme Cornil

The rise of van der Waals hetero-structures based on transition metal dichalcogenides (TMDs) opens the door to a new generation of optoelectronic devices.


2019 ◽  
Vol 6 (8) ◽  
pp. 190437 ◽  
Author(s):  
Santanu Mukherjee ◽  
Jonathan Turnley ◽  
Elisabeth Mansfield ◽  
Jason Holm ◽  
Davi Soares ◽  
...  

Growing concerns regarding the safety, flammability and hazards posed by Li-ion systems have led to research on alternative rechargeable metal-ion electrochemical storage technologies. Among the most notable of these are Na-ion supercapacitors and batteries, motivated, in part, by the similar electrochemistry of Li and Na ions. However, sodium ion batteries (SIBs) come with their own set of issues, especially the large size of the Na + ion, its relatively sluggish kinetics and low energy densities. This makes the development of novel materials and appropriate electrode architecture of absolute significance. Transition metal dichalcogenides (TMDs) have attracted a lot of attention in this regard due to their relative ease of exfoliation, diverse morphologies and architectures with superior electronic properties. Here, we study the electrochemical performance of Mo-based two-dimensional (2D) layered TMDs (e.g. MoS 2 , MoSe 2 and MoTe 2 ), exfoliated in a superacid, for battery and supercapacitor applications. The exfoliated TMD flakes were interfaced with reduced graphene oxide (rGO) to be used as composite electrodes. Electron microscopy, elemental mapping and Raman spectra were used to analyse the exfoliated material and confirm the formation of 2D TMD/rGO layer morphology. For supercapacitor applications in aqueous electrolyte, the sulfide-based TMD (MoS 2 ) exhibited the best performance, providing an areal capacitance of 60.25 mF cm −2 . For SIB applications, TMD electrodes exhibited significantly higher charge capacities than the neat rGO electrode. The initial desodiation capacities for the composite electrodes are 468.84 mAh g −1 (1687.82 C g −1 ), 399.10 mAh g −1 (1436.76 C g −1 ) and 387.36 mAh g −1 (1394.49 C g −1 ) for MoS 2 , MoSe 2 and MoTe 2 , respectively. Also, the MoS 2 and MoSe 2 composite electrodes provided a coulombic efficiency of near 100 % after a few initial cycles.


2020 ◽  
Vol 2 (6) ◽  
pp. 2333-2338
Author(s):  
Liang Guo ◽  
Chun-An Chen ◽  
Zhuquan Zhang ◽  
Daniele M. Monahan ◽  
Yi-Hsien Lee ◽  
...  

Two-dimensional electronic spectroscopy (2DES) provides dual perspectives for characterizing exciton lineshape in monolayer transition metal dichalcogenides (TMDCs), allowing discrimination of homogeneous and inhomogeneous linewidths.


Sign in / Sign up

Export Citation Format

Share Document