Impact of Electrostatic Effects on Wet Etching Phenomenon in Nanoscale Region

2014 ◽  
Vol 219 ◽  
pp. 115-118 ◽  
Author(s):  
Atsushi Okuyama ◽  
Suguru Saito ◽  
Yoshiya Hagimoto ◽  
Kenji Nishi ◽  
Ayuta Suzuki ◽  
...  

The microminiaturization of semiconductor devices has made it necessary to control the wet etching process on the nanometer order. It is therefore extremely important to understand wet etching reactions in the nanoscale region of solid-liquid interfaces, in order to assist in optimizing process conditions to satisfy the severe demand for semiconductor devices. Simulations performed to analyze the behavior of liquid molecules in the nanoscale region have been reported [1], but there have been few reports of detailed experimental results. We here report detailed experimental results on the wet etching behavior of SiO2 film in the nanoscale region between Si materials.

Author(s):  
Tomokazu Nakai

Abstract Currently many methods are available to obtain a junction profile of semiconductor devices, but the conventional methods have drawbacks, and they could be obstacles for junction profile analysis. This paper introduces an anodic wet etching-based two-dimensional junction profiling method, which is practical, efficient, and reliable for failure analysis and electrical characteristics evaluation.


2021 ◽  
Vol 11 (6) ◽  
pp. 2464
Author(s):  
Sha Yang ◽  
Neven Ukrainczyk ◽  
Antonio Caggiano ◽  
Eddie Koenders

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1502
Author(s):  
Johannes M. Parikka ◽  
Karolina Sokołowska ◽  
Nemanja Markešević ◽  
J. Jussi Toppari

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.


2017 ◽  
Vol 19 (11) ◽  
pp. 7708-7713 ◽  
Author(s):  
Christian Totland ◽  
Anne Marit Blokhus

Mixtures of surfactants and medium-chained alcohols display an anomalous phase behaviour, with the formation of swollen micelles in mid-range surfactant concentrations. Such alcohols also affect the aggregation and adsorption behaviour of surfactants at solid–liquid interfaces.


Sign in / Sign up

Export Citation Format

Share Document