Metal Removal Efficiency in Deep Submicron Trenches by Wet Chemicals

2014 ◽  
Vol 219 ◽  
pp. 32-35
Author(s):  
Philippe Garnier ◽  
Nathalie Drogue ◽  
Romain Duru

Metal contamination impact on transistors’ degradation has been widely studied. Nonetheless, most of the work has been performed on blanket wafers, or based on punctual yield crisis during the integrated circuits’ manufacturing. This paper proposes a comparison of the contamination and metals removal efficiency between blanket wafers and inside deep silicon trenches.

2012 ◽  
Vol 468-471 ◽  
pp. 2882-2890 ◽  
Author(s):  
R. H. Al Anbari ◽  
S. M. Alfatlawi ◽  
J. H. Albaidhani

Heavy metal removal by electrocoagulation using iron electrodes material was investigated in this paper. Several working parameters, such as pH, current density and heavy metal ions concentration were studied in an attempt to achieve a higher removal capacity. A simple and efficient treatment process for removal of heavy metals is essentially necessary. The performance of continuous flow electrocoagulation system, with reactor consists of a ladder series of twelve electrolytic cells, each cell containing stainless steel cathode and iron anode. The treatment of synthetic solutions containing Zn 2+,Cu 2+,Ni 2+,Cr 3+,Cd 2+ and Co 2+ ,has been investigated. Results showed that iron is very effective as sacrificial electrode material for heavy metals removal efficiency and cost points. Also it was concluded that the chromium has lower efficient removal as compared to zinc, copper and nickel. At the same time cadmium and cobalt have minimum removal efficiency.


2016 ◽  
Vol 255 ◽  
pp. 313-318 ◽  
Author(s):  
Philippe Garnier ◽  
Hervé Fontaine

An extremely low level of metal contamination is required for specific devices like memories and CMOS Image sensors. Most of past work in the literature has focused on blanket wafer decontamination, since metrology is mostly adapted to flat surfaces. Metal removal efficiency has been compared between blanket wafers versus high aspect ratio deep trenches wafers. Two different metrology technics enable a quantitative and spatial metal removal determination on patterned wafers. Efficient cleaning in high aspect ratio structures requires much longer cleaning recipes than on flat surfaces.


1997 ◽  
Vol 477 ◽  
Author(s):  
Christopher P. D'Emic ◽  
Stephan Cohen ◽  
Mary Ann Zaitz

ABSTRACTThe drive to reduce chemical consumption for cost savings is high in the semiconductor industry. Recently, studies have shown that the traditional 1:1:5 ratios of the SC1, SC2 cleans can be reduced and still maintain good cleaning. The optimization of process parameters must be done in accordance with the type of cleaning tool. Processes in wet decks may be optimized differently from single chamber tools, especially if extended bath lifetimes are expected. In this study, temperature reduction and dilution of the SC1 and SC2 cleans in a wet deck are examined for their effects on metals removal efficiency from silicon surfaces as measured by TRXRF. For an HF, SC1, SC2 sequence, good metal removal can be maintained by dropping the SC1 temperature down to 35°C and chemical ratio to 1:1:40. At too low an SC1 dilution and temperature, the Cu removal efficiency drops. In SC2, good metals removal remains without peroxide and a lower limit for HC1 is determined. It is also found that peroxide must be reduced if HCl is reduced in SC2. otherwise metals plating out from SC1 cannot be removed effectively. To understand the impact of these reduced cleans on gate oxide integrity, the electrical properties of 30 A gate oxides grown using these experimental pre-gate cleans is discussed.


Author(s):  
Cha-Ming Shen ◽  
Yen-Long Chang ◽  
Lian-Fon Wen ◽  
Tan-Chen Chuang ◽  
Shi-Chen Lin ◽  
...  

Abstract Highly-integrated radio frequency and mixed-mode devices that are manufactured in deep-submicron or more advanced CMOS processes are becoming more complex to analyze. The increased complexity presents us with many eccentric failure mechanisms that are uniquely different from traditional failure mechanisms found during failure analysis on digital logic applications. This paper presents a novel methodology to overcome the difficulties and discusses two case studies which demonstrate the application of the methodology. Through the case studies, the methodology was proven to be a successful approach. It is also proved how this methodology would work for such non-recognizable failures.


2017 ◽  
Vol 339 ◽  
pp. 33-42 ◽  
Author(s):  
Yaru Cao ◽  
Shirong Zhang ◽  
Guiyin Wang ◽  
Ting Li ◽  
Xiaoxun Xu ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document