The Influence of the Chemical Composition of Superalloys on the Oxidation Resistance of Aluminide Coating

2015 ◽  
Vol 227 ◽  
pp. 365-368
Author(s):  
Maryana Zagula-Yavorska ◽  
Jan Sieniawski ◽  
Ryszard Filip

The aim of the present work was to determine the influence of chemical composition of the coating protected nickel based superalloys Inconel 713 LC, Inconel 625 and CMSX 4 on the oxidation resistance of aluminide coating. Protective aluminide coatings were deposited in the CVD process. The low activity aluminizing at the presence of AlCl3 and H2 was carried out. Cyclic oxidation test for both coated and uncoated superalloys was performed at 1100°C for 1000 h in the air atmosphere. Microstructure of aluminide coatings after oxidation test was investigated by a scanning electron microscopy (SEM) and an energy dispersive spectroscopy (EDS). The best oxidation resistance shows uncoated Inconel 713 LC superalloy. That is due to a relatively high aluminum content in this alloy. The aluminide coating deposited on the surface of Inconel 625 shows the largest oxidation resistance (insignificnt changes of mass for the whole test duration). Excellent oxidation resistance is a result of Al2O3 scale formation.

2015 ◽  
Vol 227 ◽  
pp. 361-364
Author(s):  
Ryszard Filip ◽  
Maryana Zagula-Yavorska ◽  
Maciej Pytel ◽  
Jolanta Romanowska ◽  
Mateusz Maliniak ◽  
...  

The aim of the present work was to determine the influence of chemical composition of the protective coating on the oxidation resistance of the protected alloy. Zirconium modified and nonmodified aluminide coatings were deposited on the MAR M200 nickel superalloy by the CVD method. The oxidation tests were conducted at 1100°C into 23 hour in the air. The chemical composition (EDS) analysis was performed. The kinetic of oxidation of zirconium modified and nonmodified aluminide coatings was similar. Oxides inclusions called pegs were observed on the surface of oxidized aluminide coating. HfO2 oxide is more stable than Al2O3 oxide, hafnium atoms can replace aluminum atoms in Al2O3 oxides. This phenomena let to stabilize NiAl phase and increase of oxidation resistance of aluminide coating.


2013 ◽  
Vol 197 ◽  
pp. 58-63
Author(s):  
Marek Góral ◽  
Maciej Pytel ◽  
Ryszard Filip ◽  
Jan Sieniawski

The Zr modified aluminide coatings is an alternative concept for replacing Pt-modified aluminide bondcoat for thermal barrier coatings. In the paper the influence of process parameters on the chemical composition and the thickness of aluminide coatings will be presented. The zirconia-doped aluminide coating was deposited on turbine blades made from ZS6K nickel superalloy during the low-activity CVD process. In recent work the influence of turbine blade geometry on thickness of coating was observed. The thickest coating was observed on the trailing and leading edge on the blade cross-section. In the conducted research, the light and scanning electron microscopy were used as well as the EDS chemical composition microanalysis.


2019 ◽  
Vol 253 ◽  
pp. 03006
Author(s):  
Jolanta Romanowska ◽  
Maryana Zagula-Yavorska ◽  
Łukasz Kolek

The application of protective aluminide coatings is an effective way to increase the oxidation resistance of the treated parts and prolongs their lifetime. The addition of small amount of noble metals (platinum or palladium) or reactive elements such as: hafnium, zirconium, yttrium and cerium has a beneficial effect on oxidation behavior. This beneficial effect includes an improvement of adhesion of alumina scales and reduction of oxide scale growth rate. Platinum and hafnium or zirconium modified aluminide coating were deposited on pure nickel using the electroplating and CVD methods. The coatings consisted of two layers: an outer, β-NiAl phase and the interdiffusion γ’-Ni3Al phase. Palladium dissolved in the whole coating, whereas hafnium and zirconium formed inclusions on the border of the layers. Samples were subjected to cyclic oxidation test at 1100 °C for 200h. Oxidation resistance of the palladium, Hf+Pd and Zr+Pd modified coatings deposited on pure nickel does not differ significantly, but is better than the oxidation resistance of the non-modified one.


2011 ◽  
Vol 409 ◽  
pp. 820-825 ◽  
Author(s):  
Takahiro Yagi ◽  
Tomohiro Sasaki ◽  
Takehiko Watanabe ◽  
Atsushi Yanagisawa

Al-rich aluminide coating on Ti-49.1at%Al alloys has been performed by two-step process of thermal aluminum spray and diffusion treatment. Effect of the diffusion time on the oxidation resistance, and the change of microstructures in the coating during the oxidation test in air at 900°C for 100 h were investigated. In the aluminized coating before the oxidation tests, formations of TiAl3 on the outer layer and an intermediate layer consisting of Ti2Al5, TiAl2, and Al-rich TiAl were observed. The intermediate layer developed by the diffusion treatment for 3600s. In the oxidation test over 50 h, the specimen diffusion treated for 3600 s exhibited the lower oxidation rate than that diffusion treated for 900 s. Multi-oxide scales of TiO2 and Al2O3 were observed on the both surfaces of aluminized specimens. Large TiO2 particles were observed on the specimen of tD = 900 s. It was found that the TiAl2 layer developed during the oxidized specimen, while the thicknesses of Al-rich TiAl and TiAl3 layer decreased by the growth of TiAl2.


2010 ◽  
Vol 142 ◽  
pp. 274-278 ◽  
Author(s):  
Jing Chong Zhang ◽  
Yue Bo Zhou

Reactive reactive element oxide RexOy (Re=Ce, Y)-modified aluminide coatings have been developed by the first step of co-electrodeposition of Ni with CeO2 or Y2O3 particls on pure Ni and the subsequent step of diffusional aluminizing on electrodeposited Ni-CeO2/or Y2O3 composite films using pack cementation method at 1100OC for 4 hr. By comparison, aluminizing was also performed with the same condition on an as-deposited Ni film without RexOy particles. The oxidation in air at 900OC indicated that the RexOy (Re=Ce, Y)-modified aluminide coatings were profoundly oxidation resistance as compared to the RexOy (Re=Ce, Y)-free coatings. The effect of CeO2 or Y2O3 on the oxidation behavior is discussed in detail.


2013 ◽  
Vol 58 (3) ◽  
pp. 697-701 ◽  
Author(s):  
M. Zielińska ◽  
M. Zagula-Yavorska ◽  
J. Sieniawski ◽  
R. Filip

Abstract An investigation was conducted to synthesize βNiAl coating on the nickel based superalloy Mar M247 in a chemical vapor deposition process (CVD). The low activity process of aluminizing was carried out for 8 hours at the temperature 1050°C. Surface morphology and cross-section microstructure of the diffusion coating were studied and compared by using an optical microscope, a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy and an X-ray diffractometer. It was found that aluminide coating with the thickness of 37 μm consisted of two layers: an outer one and the inner interdiffusion one. The outer layer consists of single phase βNiAl. The inner one, consisted of βNiAl phase and carbides: MC and M23C6 types which were originally present in the substrate. Cyclic oxidation test was performed at 1000°C for 1000h in the air atmosphere. The aluminized samples exhibited a small mass increase and the α- Al2O3 oxide formed during oxidation test had a good adherence to the coating. The decrease of aluminum content in the coating with the prolongation of the oxidation time and the phase transformation of βNiAl to γ’ Ni3Al and to γNi solid solution were observed. The samples without the coating showed a strong mass decrease in comparison to the coated samples.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (10) ◽  
pp. 31-34 ◽  
Author(s):  
Shigeji Taniguchi

The intermetallic compound, TiAl, and materials based on it have been receiving considerable attention because of their high specific strengths at elevated temperatures. Their mechanical properties are being extensively studied, with a view to application in aircraft or automobile engines. Before using these materials at elevated temperatures, their interactions with the environment should be investigated and suitable measures taken to overcome any degradation. It has, however, been reported that protective Al2O3 scales do not form when TiAl is exposed to an oxidizing atmosphere in spite of its high aluminum content. The formation of an A12O3 scale, or at least a scale containing a continuous A12O3 layer, is a prerequisite for providing sufficient protection. Therefore, much effort has been expended in choosing suitable alloying additions. However, relatively less effort has been devoted to surface coatings on such materials. The purpose of the alloying addition is two-fold: to improve mechanical properties, particularly ductility, and to improve oxidation resistance. However, compatible alloying elements are rare. For instance, some elements which improve the ductility, e.g., vanadium, chromium, and manganese, lower the oxidation resistance. Accordingly, a reasonable concept for the designer is to add effective alloying elements to improve the mechanical properties and to apply a coating to provide protection against the environment. For improved reliability, elements that improve the oxidation resistance can also be added to increase the protection unless they reduce the required mechanical properties.


2011 ◽  
Vol 695 ◽  
pp. 365-368 ◽  
Author(s):  
Young Ho Song ◽  
Joon Sik Park ◽  
Jeong Min Kim ◽  
Seong Hoon Yi

Mo-Si-B alloys have been received an attention due to the high temperature strength and phase stability. However, the nature of poor oxidation resistance often limits the application of the alloy system. The unstable MoO3 phase is naturally produced when the alloys were exposed at low and /or high temperature in an air atmosphere. In order to resolve the poor oxidation resistance of the alloy system, several attempts have been made via surface coatings and/or component additions. In this study, the oxidation behaviors of the Ti powder thermal spray coated Mo-Si-B alloys have been investigated in order to identify the underlying mechanism for the effect of precursor Ti coatings on Mo-Si-B alloys. The oxidation tests performed at 1100 °C show that the Ti powder was tightly bonded and reacted with the surface of the substrate, and TiO2 layer was formed at the outer surface of the coated Ti layer as a result of oxidation exposure. The oxidation behaviors of pure elemental component coated Mo-Si-B alloys have been discussed in terms of microstructural observations during oxidation tests.


2015 ◽  
Vol 227 ◽  
pp. 385-388 ◽  
Author(s):  
Grzegorz Moskal ◽  
Dawid Niemiec

Characterization of top-surface of NiCrAlY coating deposited by plasma spraying process on Inconel 625 Ni based superalloys was analyzed in two different completely conditions. First of them was as sprayed state of NiCrAlY coating and the second one was condition after grinding process. The basic aim of this treatment was related to obtain totally different conditions of coatings surface especially from roughness point of view. Those two types of top surface morphology was a base to comparison of oxidation resistant during static oxidation test at temperature of 1000°C and 1100°C. The temperature of static oxidation test was 1000°C and 1100°C. The specimens were moved out from furnace after 25, 300, 500, 750 and 1000 hours of exposition in laboratory air. The range of investigations after each interval included top surface characterization of specimens by SEM, XRD and EDS method. Those investigations showed that different types of top surface conditions had a fundamental influence on oxides layer morphology. Especially in the case of phase`s constituent of oxides zone. More detailed investigations were made on the cross sections of two types of investigated specimens. Analysis of oxides layer morphology showed in this case basic differences in thickness of oxides zone which was much higher in the case of as sprayed NiCrAlY coating.


Sign in / Sign up

Export Citation Format

Share Document