Unmanned Ground Vehicle Energy Efficiency Validation in Territory Surveillance Mission

2016 ◽  
Vol 251 ◽  
pp. 164-170
Author(s):  
Eero Väljaots ◽  
Raivo Sell ◽  
Marius Rimasauskas

This paper describes test case of an energy efficiency validation method. Test case is selected as surveillance mission which is simple and common case for universal unmanned ground vehicle where environment dynamics has major influence. The prototype UGV platform is equipped with combined measurement system providing data about dynamic parameters of platform physical movement as well as real-time energy consumption. Platform energy efficiency is evaluated on several stages, enabling to evaluate both mechanical design and control system algorithms. In addition, environment interaction with the vehicle is measured also for analyzing the vehicle limitations and scope of use. Real-condition missions are used for vehicle design validation purposes.

Author(s):  
Zain UI Abdin ◽  
Taimur Islam Khan ◽  
Mazhar Shabir

Author(s):  
Michele Trancossi ◽  
Jose C. Pascoa

Modular Design has made an important contribution to the industrial evolution, increase of quality of products and goods and to economic development. It has produced an important evolution in design (technical modularity), in the organization of production and of companies. It allowed going beyond vertical integration, by fostering vertical specialization in both manufacturing and innovation. Several authors are appointing important question on the modular approach. They move observations of different nature concluding that the enthusiasm for modularity has gone too far. One of the critical positions sustains that modular design has imposed technical choices that conflicts with energy efficiency in vehicle design such as a gradual increase of weight over time and the consequent reduction of potential gains in terms of energy consumption and environmental footprint of vehicles. This paper agrees with some arguments of the revisionist literature in cautioning against errors that can be produced by a pervasive modularity. But it moves from an energetic analysis and has not the objective of defining an alternative theory. More modestly, it aims to present a possible way for coupling modular design with energy optimization in the case of an electric vehicle. The initial inspiration can be of this case study is Bejan’s preliminary modular definition of constructal optimization, which can fit perfectly with industrial modular design. Even if this modular optimization does not have the ambition of defining the best possible solution to a complex design problem, such as Multidisciplinary Design Optimization has, it allows defining configuration that can simply evolve over time by mean of a step by step optimization of the critical components that influences the behavior of a complex industrial system. It reveals then to be applicable to the concept of vehicle platform that is today widely in use. The specific test case is the design of an electric city vehicle which has been optimized by a step applying this modular optimization approach. This paper has also a romantic value because it ha taken the move from the emotion that has been caused by the stop to the production of an extraordinary myth, such as Land Rover Defender. 70 years of production without important changes means that Defender has been not only the most successful British vehicle, but also that it has been a fundamental part of our way of living. This extraordinary longevity is an extraordinary technical and cultural heritage to our time. This decision forces the authors to try to analyze the conceptual modular design of a vehicle that can compete with Defender in terms of use and performances. Results have been surprising demonstrating that the use of industrial grade components and their accurate choice will allow defining new vehicle platforms that can radically improve energy efficiency of vehicles.


2022 ◽  
Vol 12 (1) ◽  
pp. 525
Author(s):  
Yasuhiro Fukuoka ◽  
Kazuyuki Oshino ◽  
Ahmad Najmuddin Ibrahim

We propose a mechanical design for a simple teleoperated unmanned ground vehicle (UGV) to negotiate uneven terrain. UGVs are typically classified into legged, legged-wheeled, wheeled, and tanked forms. Legged vehicles can significantly shift their center of gravity (COG) by positioning their multi-articulated legs at appropriate trajectories, stepping over a high obstacle. To realize a COG movable mechanism with a small number of joints, a number of UGVs have been developed that can shift their COG by moving a mass at a high position above the body. However, these tend to pose a risk of overturning, and the mass must be moved quite far to climb a high step. To address these issues, we design a novel COG shift mechanism, in which the COG can be shifted forward and backward inside the body by moving most of its internal devices. Since this movable mass includes DC motors for driving both tracks, we can extend the range of the COG movement. We demonstrate that a conventional tracked vehicle prototype can traverse a step and a gap between two steps, as well as climb stairs and a steep slope, with a human operating the vehicle movement and the movable mass position.


Author(s):  
Xiaohui Yang ◽  
Jian Zhao

In order to effectively analyse the mirror sliding friction(MSF) degree of unmanned ground vehicle(UGV) and improve its anti-disturbance performance, a simulation method for MSF degree of UGV based on RBF neural network is proposed. A single-input and double-output RBF neural network is adopted to estimate the uncertain dynamic parameters of the MSF model. The obtained parameters are used to describe the MSF control law based on RBF neural network. An adaptive law based on slow time-varying disturbance characteristics is designed to estimate the total friction disturbance term in the MSF model online. The simulation results show that the proposed method can analyse the MSF degree of unmanned ground vehicle at different speeds and gradients. The influence of gradient on the decline rate of friction degree is greater than that of vehicle speed. The mean error of friction disturbance term calculated by the method is only about 0.9% which has the advantage of low error of friction degree estimation when compared to conventional methods.


1997 ◽  
Author(s):  
Matthew Caprio ◽  
Susan Larkin ◽  
John Bay ◽  
Paul Johnson ◽  
Scott Wenger ◽  
...  

Author(s):  
Mostafa Salama ◽  
Vladimir V. Vantsevich

This paper presents a project developed at the University of Alabama at Birmingham (UAB) aimed to design, implement, and test an off-road Unmanned Ground Vehicle (UGV) with individually controlled four drive wheels that operate in stochastic terrain conditions. An all-wheel drive off-road UGV equipped with individual electric dc motors for each wheel offers tremendous potential to control the torque delivered to each individual wheel in order to maximize UGV slip efficiency by minimizing slip power losses. As previous studies showed, this can be achieved by maintaining all drive wheels slippages the same. Utilizing this approach, an analytical method to control angular velocities of all wheels was developed to provide the same slippages of the four wheels. This model-based method was implemented in an inverse dynamics-based control algorithm of the UGV to overcome stochastic terrain conditions and minimize wheel slip power losses and maintain a given velocity profile. In this paper, mechanical and electrical components and control algorithm of the UGV are described in order to achieve the objective. Optical encoders built-in each dc motor are used to measure the actual angular velocity of each wheel. A fifth wheel rotary encoder sensor is attached to the chassis to measure the distance travel and estimate the longitudinal velocity of the UGV. In addition, the UGV is equipped with four electric current sensors to measure the current draw from each dc motor at various load conditions. Four motor drivers are used to control the dc motors using National Instruments single-board RIO controller. Moreover, power system diagrams and controller pinout connections are presented in detail and thus explain how all these components are integrated in a mechatronic system. The inverse dynamics control algorithm is implemented in real-time to control each dc motors individually. The integrated mechatronics system is distinguished by its robustness to stochastic external disturbances as shown in the previous papers. It also shows a promising adaptability to disturbances in wheel load torques and changes in stochastic terrain properties. The proposed approach, modeling and hardware implementation opens up a new way to the optimization and control of both unmanned ground vehicle dynamics and vehicle energy efficiency by optimizing and controlling individual power distribution to the drive wheels.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Uttam U. Deshpande ◽  
Aditya Barale ◽  
V. S. Malemath

The prime reason for proposing the work is designing and developing a low-cost guided wireless Unmanned Ground Vehicle (UGV) for use in hospitals for assistance in contactless drug delivery in COVID-19 wards. The Robot is designed as per the requirements and technical specifications required for the healthcare facility. After a detailed survey and tests of various mechanisms for steering and structure of UGV, the best mechanism preferred for steering articulated and for body structure is hexagonal as this approach provides decent performance and stability required to achieve the objective. The UGV has multiple sensors onboard, such as a Camera, GPS module, Hydrogen, and Carbon Gas sensor, Raindrop sensor, and an ultrasonic range finder on UGV for the end-user to understand the circumferential environment and status of UGV. The data and control options are displayed on any phone or computer present in the Wi-Fi zones only if the user login is validated. ESP-32 microcontroller is the prime component utilized to establish reliable wireless communication between the user and UGV.These days, the demand for robot vehicles in hospitals has increased rapidly due to pandemic outbreaks as using this makes a contactless delivery of the medicinal drug. These systems are designed specifically to assist humans in the current situation where life can be at risk for healthcare facilities. In addition, the robot vehicle is suitable for many other applications like supervision, sanitization, carrying medicines and medical equipment for delivery, delivery of food and used dishes, laundry, garbage, laboratory samples, and additional supply.


Sign in / Sign up

Export Citation Format

Share Document