Investigation of Defects at Cu(In,Ga)Se2 Flexible Solar Cells on Macroscopic and Microscopic Level and their Influence on Solar Cell Performance

2016 ◽  
Vol 258 ◽  
pp. 469-472
Author(s):  
Pavel Škarvada ◽  
Robert Macků ◽  
Lubomir Skvarenina

This paper investigates imperfection issues of Cu (In,Ga)Se2 thin-film solar cell structures and diagnostic methods of the CIGS solar cells. Electroluminescence and thermography are used to localize defect in macroscopic scale. Microstructures found in defective solar cell area are shown using micrographs. Focused ion beam was used to demonstrate that these structures interfere each solar cell layers. It is shown that micro sized defects (voids) behave as extra-stressed conductive channels that can degrade solar cells in module.

2005 ◽  
Vol 865 ◽  
Author(s):  
W. Walukiewicz ◽  
K. M. Yu ◽  
J Wu ◽  
J. W. Ager ◽  
W. Shan ◽  
...  

AbstractIt has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a “stepping stone” for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn1-yMnyOxTe1-x alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn1-yMnyOxTe1-x alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.


Author(s):  
Grigore Moldovan ◽  
Shark Lotharukpong ◽  
Peter Wilshaw

Abstract Electron Beam Induced Current (EBIC) characterization is unique in its ability to provide quantitative high-resolution imaging of electrical defects in solar cells. In particular, EBIC makes it possible to image electrical activity of single dislocations in a Dual-Beam Focused Ion Beam (FIB) Scanning Electron Microscope (SEM), to cut and lift out a micro-specimen containing a particular dislocation, and then transfer it for further structural or chemical analysis. As typical solar cell material presents a complex array of defects, it is important to observe statistical variations within a sample and select key sites for analysis. This paper describes a method for automated defect identification and characterization, and shows an application to multi-crystalline silicon (mc-Si) solar cell wafers selected from different heights along the manufactured ingot. Information presented here includes the experimental setup for data acquisition, as well as the basic algorithms used for identification and extraction of dislocation contrast.


2013 ◽  
Vol 592-593 ◽  
pp. 449-452
Author(s):  
Jiří Šicner ◽  
Pavel Škarvada ◽  
Robert Macků ◽  
Pavel Koktavý

Solar cells of common sizes contains many of these defects and it is not easy to determine the influence of particular defects on the characteristics of the whole solar cell. Therefore, in our research we use samples of size of square centimeter at which we can disentangle the influence of the defect. We localize the defect by using a CCD camera, we measure the electrical, thermal and optical properties of the sample and then study it by means an electron microscope, we find the damaged structure and put it to focused ion beam. We expect the change in electrical, thermal and optical properties of the sample.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shigeru Yamada ◽  
Shinsuke Miyajima ◽  
Makoto Konagai

A fabrication process for silicon/silicon dioxide (Si/SiO2) superlattice microwire array solar cells was developed. The Si/SiO2 superlattice microwire array was fabricated using a microsphere lithography process with polystyrene particles. The solar cell shows a photovoltaic effect and an open-circuit voltage of 128 mV was obtained. The limiting factors of the solar cell performance were investigated from the careful observations of the solar cell structures. We also investigated the influence of the microwire array structure on light trapping in the solar cells.


1982 ◽  
Vol 95 (4) ◽  
pp. 369-375 ◽  
Author(s):  
D.J. Sharp ◽  
J.K.G. Panitz ◽  
C.H. Seager

2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


2001 ◽  
Vol 664 ◽  
Author(s):  
Baojie Yana ◽  
Jeffrey Yanga ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTA systematic study has been made of the annealing kinetics of amorphous silicon (a-Si) alloy solar cells. The cells were deposited at various rates using H2 dilution with radio frequency (RF) and modified very high frequency (MVHF) glow discharge. In order to minimize the effect of annealing during light soaking, the solar cells were degraded under 30 suns at room temperature to quickly reach their saturated states. The samples were then annealed at an elevated temperature. The J-V characteristics were recorded as a function of annealing time. The correlation of solar cell performance and defect density in the intrinsic layer was obtained by computer simulation. Finally, the annealing activation energy distribution (Ea) was deduced by fitting the experimental data to a theoretical model. The results show that the RF low rate solar cell with high H2 dilution has the lowest Ea and the narrowest distribution, while the RF cell with no H2 dilution has the highest Ea and the broadest distribution. The MVHF cell made at 8Å/s withhigh H2 dilution shows a lower Ea and a narrower distribution than the RF cell made at 3 Å/s, despite the higher rate. We conclude that different annealing kinetics plays an important role in determining the stabilized performance of a-Si alloy solar cells.


Sign in / Sign up

Export Citation Format

Share Document