Biological Production of Copper Sulfide Concentrate from Flotation Tailings and Low Grade Ore

2017 ◽  
Vol 262 ◽  
pp. 202-206 ◽  
Author(s):  
Víctor J. Zepeda ◽  
Ivan Nancucheo ◽  
Milton Guillen ◽  
Enrique Becerra ◽  
Camila Escuti ◽  
...  

Flotation tailings are hazardous due to physical and chemical instability and are currently considered one of the main pollution concerns of mining industry. Most of these tailings are fine-grained residues with low copper content (0.1-0.8%) and include toxic compounds, such as heavy metals, arsenic, and flotation reagents, among others. Another hazard is the generation of acid mine drainage (AMD) due to biological oxidation of tailings. On the other hand, low-grade ore is challenging the mining industry to commercially produce copper.The main objective of this work was to assess the use of flotation tailings and low-grade ore to produce a biologically-produced copper sulfide, as a product for further pyrometallurgical or fine chemistry processing. Low-grade ore and flotation tailings were first agglomerated at different proportions and leaching tests were performed in 1m columns, using either industrial or synthetic raffinate solution. Then, the PLS solution obtained from the column tests was subjected to selective precipitation of copper by using biogenic hydrogen sulfide (H2S) generated by a mixed culture of neutrophilic sulfate reducing bacteria (SRB), enriched from sediments of Caracarani river (located at 4,600 m over sea level in northern Chile).Over 91% of the copper soluble present in the PLS was recovered as copper sulfide in 28 days, while ferrous iron, other metals and arsenic remained in solution. Analysis performed by XRD confirmed the presence of copper in the precipitate (58% as covellite). This work demonstrates the possibility to apply bioleaching and bio-precipitation technologies to treat tailings and low-grade copper ore to produce a high quality copper sulfide.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1630-1635
Author(s):  
Jian Gang Ku ◽  
Hui Huang Chen ◽  
Wen Yuan Liu

The copper ore, which has fine-grained nature and differences in the degree of mineral dissemination, is a kind of low grade sulfide minerals. Tests indicate that not only the grinding fineness but also the combination mode of depressants is one of the most important factors to improve the concentrate grade index. Additionally, according to tests conducted with dosage of lime, the rougher flotation should be operated at a pH of 11. Furthermore, all the depressants used were effective to increase the concentrate grade. By the closed-circuit micro-flotation experiment, satisfied grade index (18.7%Cu with 81% recovery) of the final concentrate was achieved, which could provide reference in industrial applications.


2013 ◽  
Vol 734-737 ◽  
pp. 935-940
Author(s):  
Ju Wang ◽  
Hui Xin Dai ◽  
Yan Hua Guo

Based on a single Yunnan copper sulfide, we conducted a series of flotation test research. The results indicate that the raw ore grade is 0.78%,by closed circuit process of 1stage of roughing, 1stage of scavenging and 2 stages of cleaning flotation, 14.85% concentrate grade with 92.49% recovery can be obtained, and the index is ideal.


2013 ◽  
Vol 734-737 ◽  
pp. 962-966
Author(s):  
Yong Jun Xian ◽  
Shu Ming Wen ◽  
Hai Ying Shen ◽  
Qi Nie

The present study aims to characterize the copper ore from east area of Yunnan province. The results indicate that the ores is a representative low grade and and ultra-fine-grained ore. As a result, a suitable flotation flow i.e. “ultrafine grinding- sulphidizing and dispersing - bulk flotation with low dosage collector” was presented for processing of eligible copper concentrate with high recovery and the main factors i.e. grinding fineness, regulators types and dosage and collector dosage affecting the indexes of roughing concentration was investigated. As a result, a close-circuit flotation test scheme was proceeded, which obtained a high quality copper concentrate with Cu grade of 25.12%, copper recovery of 87.63%. This index is successful in the aim of recovery copper for such mixed copper ore.


2014 ◽  
Vol 881-883 ◽  
pp. 1603-1606
Author(s):  
Yan Xiong Fu ◽  
Bao Liang Ge ◽  
Qing Li ◽  
Jing Lu Zhang

In this thesis the object of study is a low grade sandstone copper with complex composition. Through the process mineralogy research on a sandstone copper ore,the result showed that the primary sulfide copper minerals are tetrahedrite and chalcopyrite; secondary sulfide copper minerals are bornite, chalcocite and azurite; the main oxide copper mineral is malachite; the main gangue mineral is quartz. The grade of copper is 0.77% and the oxidation rate is 45.45% in the run of mine, it is an oxide copper ore with not thoroughly oxidation. There is a part of disseminated particle size of copper minerals is relatively fine. Mainly sulfide copper minerals are paragenesis with dolomite and pyrite; oxide copper minerals are often blended with limonite. So the key of obtaining the good flotation index is selecting reasonably grinding fineness and making the part of fine-grained disseminated copper full liberation.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


2017 ◽  
Vol 262 ◽  
pp. 185-188 ◽  
Author(s):  
Alison Cox ◽  
Christopher G. Bryan

Previous agglomerate-scale heap bioleaching studies have outlined the variations in cell numbers of the liquid and attached phases during colonisation of sterilised ore by a pure culture. In this study, a mixed mesophilic culture was used in agglomerate-scale columns containing non-sterilised low-grade copper ore. Over a six - month period, columns were harvested at various intervals to provide snapshots of the metal distribution and the quantity, location, and ecological variations of mineral-oxidizing microbes within the ore bed. The initial colonisation period in this experiment was dissimilar to previous work, as the indigenous community was retained within the ore-bed throughout acid agglomeration. The overall colonisation phase lasted for approximately 1,000 hours until cell concentrations stabilised. In each column, less than 0.05% of the total cells were found in the leachate, 15-20% in the interstitial phase and the remaining ~80% were attached to the mineral surface. Once cell numbers had stabilised, interstitial cell concentrations were approximately 2,000× greater than those in the leachate. This difference persisted for the duration of the experiment. Copper concentrations in the two liquid phases generally decreased over time, but were on average 50× higher in the interstitial phase. Iron concentrations were more stable, but again were 30× higher in the interstitial phase. This demonstrates that that the difference in cell concentration between the leachate and interstitial phases cannot be explained through diffusion gradients within the system as it is much greater than those observed for the dissolved metals. It also shows that the specific environmental conditions of the interstitial and attached cells are very different to those inferred through analysis of leachates alone.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 378 ◽  
Author(s):  
Marcela Martínez ◽  
Yanett Leyton ◽  
Luis Cisternas ◽  
Carlos Riquelme

The environmental problems generated by waste from the mining industry in the mineral extraction for business purposes are known worldwide. The aim of this work is to evaluate the microalga Muriellopsis sp. as a potential remover of metallic ions such as copper (Cu2+), zinc (Zn2+) and iron (Fe2+), pollutants of acid mine drainage (AMD) type waters. For this, the removal of these ions was verified in artificial acid waters with high concentrations of the ions under examination. Furthermore, the removal was evaluated in waters obtained from areas contaminated by mining waste. The results showed that Muriellopsis sp. removed metals in waters with high concentrations after 4–12 h and showed tolerance to pH between 3 and 5. These results allow proposing this species as a potential bioremediator for areas contaminated by mining activity. In this work, some potential alternatives for application in damaged areas are proposed as a decontamination plan and future prevention.


Sign in / Sign up

Export Citation Format

Share Document