The Influence of Nitrogen Doping Concentration on the Strain and Band Gap Energy of N-Doped Zinc Oxide Prepared Using Spray Coating Technique

2017 ◽  
Vol 266 ◽  
pp. 141-147 ◽  
Author(s):  
Heri Sutanto ◽  
Eko Hidayanto ◽  
Muhammad Irwanto ◽  
Mukholit ◽  
Singgih Wibowo ◽  
...  

N-ZnO thin layer is widely used in application of wastewater photo catalyst. N-ZnO thin films have been successfully deposited on glass substrate using spray coating technique at 450 °C with varying concentrations of N from Urea source. XRD test results showed that the N-ZnO has a polycrystalline structure with diffraction field (100), (002), (101) and (110). The presence of nitrogen atoms in the lattice of ZnO causes a shift in diffraction angle between 0.08o - 0.18o. N-ZnO thin layer showed the occurrence of tensile strain. Surface morphology of N-ZnO is shaped like mine (like root). All samples have band gap energies lower than that of ZnO and the smallest is sample N6 with Eg = 3.249 eV. The presence of nitrogen atom increases surface roughness and decreases band gap energy.

2021 ◽  
Vol 1731 ◽  
pp. 012060
Author(s):  
H D Fahyuan ◽  
F Deswardani ◽  
N Nurhidayah ◽  
M F Afrianto ◽  
H Heriansyah ◽  
...  

2012 ◽  
Vol 616-618 ◽  
pp. 1773-1777
Author(s):  
Xi Lian Sun ◽  
Hong Tao Cao

In depositing nitrogen doped tungsten oxide thin films by using reactive dc pulsed magnetron sputtering process, nitrous oxide gas (N2O) was employed instead of nitrogen (N2) as the nitrogen dopant source. The nitrogen doping effect on the structural and optical properties of WO3 thin films was investigated by X-ray diffraction, transmission electron microscopy and UV-Vis spectroscopy. The thickness, refractive index and optical band gap energy of these films have been determined by analyzing the SE spectra using parameterized dispersion model. Morphological images reveal that the films are characterized by a hybrid structure comprising nanoparticles embeded in amorphous matrix and open channels between the agglomerated nanoparticles. Increasing nitrogen doping concentration is found to decrease the optical band gap energy and the refractive index. The reduced band gaps are associated with the N 2p orbital in the N-doped tungsten oxide films.


2015 ◽  
Author(s):  
A. S. Ibraheam ◽  
Y. Al-Douri ◽  
U. Hashim ◽  
Waleed K. Ahmed

Cu2Zn0.8Cd0.2SnS4 quinternary alloy nanostructures were prepared with different copper (Cu) concentrations; 0.3, 0.5, 0.7 and 0.9 mol/L using the spin coating technique. The direct band gap energy of Cu2Zn0.8Cd0.2SnS4 quinternary alloy nanostructures is investigated to decrease as Cu increases. The transmittance value in the range 63–49% is depending on Cu content.


2020 ◽  
Vol 500 ◽  
pp. 144048 ◽  
Author(s):  
Zhilei Sun ◽  
V.F. Pichugin ◽  
K.E. Evdokimov ◽  
M.E. Konishchev ◽  
M.S. Syrtanov ◽  
...  

2018 ◽  
Vol 3 (2) ◽  
pp. 6-10
Author(s):  
Devi Indriani ◽  
Helga Dwi Fahyuan ◽  
Ngatijo Ngatijo

[Title: TEST UV-VIS LAYER TiO2/N2 FOR DETERMINING BAND GAP ENERGY] The effect of nitrogen doping variation on energy band gap in TiO2 layer grown by doctor blade technique. The TiO2/N2 layer was prepared with concentrations of 0%, 15%, 25% and 25% calcined at 500°C for 3 hours. Characterization of band gap energy by using the UV-Vis spectrometer at a wavelength range of 200 nm-700 nm. The band gap energy is obtained by using the Swanepoel equation and Touch Plot method. The results showed that doping of nitrogen can decrease the band gap energy of 3.9250 eV, 3.8750 eV, 3.8375 eV and 3.9125 eV, respectively. The smallest energy band gap is obtained at 25% concentration that is 3.8375eV. Keywords: Coating TiO2/N2, transmittance, Band gap energy


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1445
Author(s):  
Maryam Saadati ◽  
Omid Akhavan ◽  
Hossein Fazli

Single-layer MoS2-MoO3-x heterojunction nanosheets with visible-light-sensitive band gap energy and average lateral dimensions of ~70 nm were synthesized by using a two-step combined exfoliation method. The exfoliation was initiated from pristine MoS2, while some sulfur sites in expanded MoS2 sheets during exfoliating were substituted by ambient non-thermal oxygen, resulting in formation of α-MoO3-x crystalline domains. The morphological features, crystalline structure, phase formation, number of layers, and optical properties of the MoS2-MoO3-x nanosheets were determined by atomic force microscopy; X-ray diffraction; field emission electron microscopy; transmission electron microscopy; and Raman, UV–visible–NIR, diffuse transmittance, and photoluminescence spectroscopies. The produced α-MoO3-x domains displayed a narrower indirect band gap energy (~1.95 eV) than that of stoichiometric MoO3 (~3 eV), and a broad light absorption range from visible to near-infrared region can act as a plasmonic material facilitating the separation of the photoinduced carriers and enhancing the photocatalytic activity of the MoS2 domain, having ~1.75(2.16) eV indirect (direct) band gap energy. In this regard, the MoS2-MoO3-x heterojunction nanosheets showed single-layer-based excitation-dependent luminescence emissions and visible-light-induced photocatalytic features, at the same time. This study can contribute to promising applications of sheet-like nanomaterials for purposes requiring simultaneous photoluminescence and photocatalytic features, such as in-vivo monitoring and targeting


2021 ◽  
Vol 7 (SpecialIssue) ◽  
pp. 377-381
Author(s):  
Aris Doyan ◽  
Susilawati Susilawati ◽  
Kehkashan Alam ◽  
Lalu Muliyadi ◽  
Firdaus Ali ◽  
...  

Synthesis and characterization of SnO2 thin films with various types of doping materials such as aluminum, fluorine and indium have been successfully carried out. This study aims to determine the effect of various types of doping materials on the quality of thin films such as the energy band gap produced. The results showed that the higher the doping concentration, the more transparent the layer formed. In addition, the optical properties of thin films such as band gap energy are affected by the applied doping. The direct and indirect values ​​of the largest band gap energy for the percentage of 95:5% are 3.62 eV and 3.92 eV are found in the SnO2: In thin layer. Meanwhile, the lowest direct and indirect values ​​of band gap energy are in the thin layer of SnO2:(Al+F+In) for a percentage of 85:15%, namely 3.41 eV and 3.55 eV. The greater the amount of doping given, the smaller the bandgap energy produced. In addition, the more combinations of doping mixtures (aluminum, fluorine, and indium) given, the smaller the bandgap energy produced. This shows that the quality of a thin film of SnO2 produced is influenced by the amount of concentration and the type of doping used


2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


Sign in / Sign up

Export Citation Format

Share Document