The Effect of Solution Treatment Temperature on Plastic Deformation and Fracture Mechanisms of Beta-Titanium Alloy

2017 ◽  
Vol 270 ◽  
pp. 218-223
Author(s):  
Jaroslav Málek ◽  
František Hnilica ◽  
Sonia Bartáková ◽  
Jaroslav Veselý

The beta-titanium alloys are used mainly in bioapplications for artificial joints and other implants. They posses interesting properties such as, high corrosion resistance, low Young’s modulus, good plasticity or superelasticity etc. In this work the effect of solution treatment temperature on deformation and fracture properties has been studied. The alloy Ti-35Nb-2Zr was processed via powder metallurgy process (cold isostatic pressing, sintering and subsequent swaging). Swaged alloy was annealed at 800, 850, 900, 950 and 1000 °C. Tensile tests have been performed on such heat treated specimens and the fracture surface has been studied in correlation with microstructure. With increasing annealing temperature both tensile strength (from 925 MPa to 990 MPa) and elongation (from 13 to 25 %) increased where the maximum values were obtained for 900 °C annealed specimens and subsequently slight decrease has been observed. The simultaneous increase of strength and elongation was attached to change of deformation mechanisms which was described by studying fracture surfaces and microstructure of deformed (tensile tested) specimens.

2012 ◽  
Vol 724 ◽  
pp. 3-6 ◽  
Author(s):  
Jin Ming Liu ◽  
Jie Liu ◽  
Guang Wei Fan ◽  
Dong Fang Du ◽  
Guo Ping Li ◽  
...  

Effect of solution treated temperature at 5001100°C on ferrite/austenite ratio and σ phase precipitation has been studied in this paper, and the tensile properties after solution treatment at 950°C and 1050°C is compared. The results shows that the ferrite/austenite ratio treated 1050~1100°C is about 1:1; and the formation of σ phase occurs in the ferrite or at ferrite - austenite boundary. The quantity of the σ phase precipitation increases firstly and then decreases with increase of the solution treatment temperature, reaching the maximum at 900°C, and disperse at above 1050°C. Tensile tests show that the fracture is brittle divided and stretched by ductile belt at 950°C, and ductile at 1050°C.


2010 ◽  
Vol 89-91 ◽  
pp. 377-382 ◽  
Author(s):  
S. Mineta ◽  
Shigenobu Namba ◽  
Takashi Yoneda ◽  
Kyosuke Ueda ◽  
Takayuki Narushima

Microstructural changes occurring in biomedical Co-Cr-Mo alloys with three carbon levels due to solution treatment and aging were investigated. Ingots of Co-Cr-Mo alloys with three different carbon levels were prepared by vacuum furnace melting; their chemical composition was Co-28Cr-6Mo-xC (x = 0.12, 0.25 and 0.35 mass%). Precipitates were electrolytically extracted from as-cast and heat-treated alloys. An M23C6 type carbide and a phase were detected as precipitates in as-cast Co-28Cr-6Mo-0.12C alloy, and an M23C6 type carbide and an  phase (M6C-M12C type carbide) were detected in as-cast Co-28Cr-6Mo-0.25C and Co-28Cr-6Mo-0.35C alloys. Only the M23C6 type carbide was detected during solution treatment. Complete precipitate dissolution occurred in all the three alloys after solution treatment. The holding time required for complete precipitate dissolution increased with increasing carbon content and decreasing solution treatment temperature. Complete precipitate dissolution occurred in the Co-Cr-Mo-C alloys solution treated at 1523 K for 43.2 ks; they were then subjected to aging from 873 to 1473 K for a heating time up to 44.1 ks after complete precipitate dissolution in solution treatment at 1523 K for 43.2 ks. The M23C6 type carbide with a grain size of 0.1–3 m was observed after aging. A time-temperature-precipitation diagram of the M23C6 type carbide formed in the Co-28Cr-6Mo-0.25C alloy was plotted.


2014 ◽  
Vol 788 ◽  
pp. 134-137 ◽  
Author(s):  
Pei Tong Ni ◽  
Li Peng Zhou ◽  
Bao Liang Bai ◽  
Ming Chen Han ◽  
Mei Sheng Zhu

Metastable beta titanium alloy Ti-5Mo-5V-8Cr-3Al, with high-strength, favorite ductility and outstanding capacity of cold forming and welding, has been found the applications in sheet metal component, pressure vessel, corrugated shell and cold heading rivet at the temperature lower than 350°C. In the present paper, the effect of cold machining deformation rate and heat treatment process on the properties and microstructures of Ti-5Mo-5V-8Cr-3Al strip were investigated. The results revealed that excellent comprehensive mechanical properties could be achieved with the alloy by reasonable cold machining process and with solution treatment at 800°C followed by gas quenching. Upon a solution and aging treatment at 480°C, the alloy performed favorite plasticity and high ultimate tensile strength of 1250MPa.


DENKI-SEIKO ◽  
1970 ◽  
Vol 41 (4) ◽  
pp. 294-301
Author(s):  
Shôichi Fukui ◽  
Susumu Isobe ◽  
Hiroshi Hirayama

2022 ◽  
Vol 60 (1) ◽  
pp. 83-93
Author(s):  
Young-We Kim ◽  
Yong-Hee Jo ◽  
Yun-Soo Lee ◽  
Hyoung-Wook Kim ◽  
Je-In Lee

The effects of dissolution of the η′ phase by solution treatment on the mechanical properties of A7075-T6 alloy were investigated. Immediately after solution treatment of the T6 sheet at 450 oC or higher, elongation significantly increased and dissolution of the η′ phase occurred. η′ is the main hardening phase. After natural-aging, GPI, which is coherent with the aluminum matrix, was formed and strength increased. When bake hardening after natural-aging was performed, the yield strength slightly increased due to partial dissolution of the GPI and re-precipitation of the η′ phase. In contrast, after solution treatment at 400 oC, there was less elongation increase due to the precipitation of the coarse η phase at grain boundaries and low dissolution of the η′ phase. In addition, when bake hardening after natural-aging was performed, the yield strength decreased due to insufficient GPI, which is the nucleation site of the η′ phase. To promote reprecipitation of the η′ phase, the solution treatment temperature was set to a level that would increase solubility. As a result, the yield strength was significantly increased through re-precipitation of a large number of fine and uniform η′ phase. In addition, to increase the effect of dissolution, a pre-aging treatment was introduced and the bake hardenability can be improved after dissolution.


2014 ◽  
Vol 788 ◽  
pp. 604-607
Author(s):  
Hong Chao Chu ◽  
Si Rong Yu ◽  
Cui Xiang Wang ◽  
Qi Lou

The thermodynamic calculation is valuable for judging the feasibility of a reaction. In the present paper, the enthalpy change (∆HR), entropy change (∆SR) and Gibbs free energy change (∆GR) among various components in AZ91D Mg alloy-Cenosphere composites (FAC/AZ91D) were calculated. Through the calculation, we obtained the relationships between the Gibbs free energy changes and temperatures. The difficulty degree of every potential reaction could be directly reflected by the correlation curve between the temperature and the Gibbs free energy change. The analysis result provided the theoretical basis for the reaction temperature and the solution treatment temperature of the FAC/AZ91D system. At the same time, the analysis based on the minimum principle of the reaction free energy revealed the final components (MgO, Mg2Si and MgAl2O4), which was partially similar to the result of XRD analysis (MgO, Mg2Si and Mg17Al12).


2021 ◽  
Vol 1016 ◽  
pp. 964-970
Author(s):  
Nageswara Rao ◽  
Geetha Manivasagam

Beta titanium alloys have several attractive features; this has resulted in this group of alloys receiving much attention since 1980’s. Among the attributes which distinguish them for their superiority over other structural materials are (i) high strength to which they can be heat treated, resulting in high strength to weight ratio (ii) high degree of hardenability which enables heat treatment in large section sizes to high strength levels (iii) excellent hot and cold workability, making them as competitive sheet materials etc. The standard heat treatment consists of solution treatment in beta or alpha plus beta phase field followed by aging. However, certain aging treatments can render the materials in a state of little or no ductility; the designer has to be aware of this behaviour and has to keep away from such treatments while working with the materials. Such unfavourable aging treatments may adversely affect not only the static properties such as reduction in area and elongation in a tensile test, but also dynamic properties such as impact toughness. Results of fractographic studies are in line with those of mechanical testing. The authors would present the foregoing analysis, based primarily on the wide-ranging researches they carried out on beta titanium alloy Ti15-3 and to some extent data published by researchers on other grades of beta titanium alloys. An attempt is made to explain the mechanisms underlying the embrittlement reactions that take place in beta titanium alloys under non-optimal aging treatments.


Sign in / Sign up

Export Citation Format

Share Document