Comparative Study on Microwave and Conventional Joining of Thermoplastic

2018 ◽  
Vol 280 ◽  
pp. 277-283
Author(s):  
C. Palanisamy ◽  
S. Kumar Selearajen ◽  
K. Siva

Industrialisation and the development of manufacturing process nowadays demand a more efficient and environmental friendly production. Microwave energy can be seen as the alternative heating application to meet the demands due to its ability to heat materials volumetrically. In this study, the usage of microwave energy to join thermoplastic is investigated. One of the key features of thermoplastic is the ability to shape when heated to their glass transition temperature and return to the moulded shape when it is cooled. Engineering thermoplastic Acrylonitrile-butadiene-styrene (ABS) was used as member while charcoal powder was used as susceptor material. The joining process was carried out with timing varying from 3 to 5 minutes, adhesive method and direct heating method. Upon the completion of joining, tensile test, 3 points test, hardness test and charpy impact test were conducted and compared to determine the strength of the joint.

2011 ◽  
Vol 704-705 ◽  
pp. 1035-1040
Author(s):  
Da Yong You

The Charpy impact test、hardness test、microstructure and morphology analysis of impact fracture by SEM were introduced to research the difference of impact toughness on 25Mn, which were in the station of hot-rolled、normalized and quenched & tempered. The resulted showed that the changes of load、deformation and energy exhaust in difference stage of deformation and fracture could be gained by Charpy impact test. 25Mn in quenched & tempered has more deformation resistance and deformation property than which in other stations. The total impact values was 6J higher than which in normalized in average, however, the crack propagation values was 16.78J higher in average. Ductile-brittle property of the material can be estimated by the analysis of crack formation values、crack propagation values and fracture morphology on samples.


2011 ◽  
Vol 183 ◽  
pp. 37-42 ◽  
Author(s):  
Janusz Cwiek ◽  
Jerzy Łabanowski ◽  
Santina Topolska ◽  
Maria Sozańska

The paper presents results of research and failure analysis undertaken to determine failure causes of a steam turbine casing. After 130,000 hours of service the crack in a outer shell of the turbine casing was found. The inner shell of the casing was made of cast steel grade G21CrMoV5-7, and the outer shell of grade G20CrMo4-5. Following research were performed in order to determine causes of the casing failure: chemical analysis; microstructure examinations with the use of light microscope, scanning electron microscope (SEM); mechanical properties examinations using the Charpy impact test, and Vickers hardness test; fracture mode evaluation with SEM.


Author(s):  
Mohd Touseef Nauman ◽  
S. Rasool Mohideen ◽  
Nasreen Kaleem

Post processing of materials is necessary to suit them for the intended requirements. The properties of stainless steel of grade 316L cannot be influenced with further processing such as hot working [1]. Thus the current study aims at investigating the properties of stainless steel of grade 316L after being subjected to deep cryogenic treatment. The specimens from both cryogenically treated and untreated conditions were subjected to Tensile Test, Charpy Impact Test, Rockwell Hardness Test, Microstructure and Percentage Shear Area Analysis and the results thus obtained are discussed in this paper. The results have shown that cryogenic treatment has improved the hardness and strength.


Author(s):  
Shreyas Biswas

Abstract: The objective of the present is to investigate hollow glass microspheres (HGMs) experimentally and carry out design analysis of hollow glass microsphere loaded PP/ABS composites. The tensile and notched Charpy impact test of HGM-filled acrylonitrile-butadiene-styrene copolymer (ABS) and Polypropylene (PP) composites will be studied with varying the concentrations of PP/ABS composite with HGM. Also further the design analysis will be studied by conducting the simulation under the same criteria and comparing the results at the end. This is done to introduce a light weight material without compromising specific strength of PP/ABS composite by adding HGM to the composite. Keywords: Hollow Glass Microsphere (HGM), ABS-Acrylonitrile butadiene styrene, PP- Polypropylene, Composites.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 751
Author(s):  
Chi Hiep Le ◽  
Petr Louda ◽  
Katarzyna Ewa Buczkowska ◽  
Iva Dufkova

This paper presents an experimental research on the mechanical properties of the hybrid composite thin-plates of the short basalt fibers (CBFs)/carbon textile-reinforced geomortar. The effect of fiber contents and lengths of CBFs on the flexural behavior of carbon textile-reinforced geopolymer specimens (TRGs) was investigated by the four-point flexural strength and Charpy impact test. The experimental results of hybrid TRGs, on the one hand, were compared with reference TRGs, without CBF addition; on the other hand, they were compared with the results of our previous publication. According to the mixing manner applied, fresh geomortar indicated a marked reduction in workability, increasing the CBF loading. Furthermore, using CBFs with lengths of 12 mm and 24 mm makes it easy to form the fiber clusters in geomortar during mixing. According to all the CBF loadings used, it was found that TRGs showed a significant improvement in both static and dynamic flexural strength. However, the failure mode of these TRGs is similar to that of the reference TRGs, described by the process of fiber debonding or simultaneously fiber debonding and collapse. In comparison with our prior work results, neither the CBF dose levels nor the fiber lengths used in this work have yielded a positive effect on the failure manner of TRGs. According to the results of the Charpy impact test, this reveals that the anchoring capacity of textile layers in geomortar plays an important role in specimens’ strength.


Sign in / Sign up

Export Citation Format

Share Document