Thermal Expansion of SrZr4-xTix(PO4)6 Ceramics

2018 ◽  
Vol 281 ◽  
pp. 169-174
Author(s):  
Yang Wang ◽  
Yuan Yuan Song ◽  
Yuan Yuan Zhou ◽  
Lu Ping Yang ◽  
Fu Tian Liu

Low thermal expansion ceramics have been widely applied in multiple fields. In this paper, a series of low thermal expansion ceramics SrZr4-xTix(PO4)6 was prepared and characterized. The SrZr4-xTix(PO4)6 ceramics could be well sintered in the temperature range of 1400~1500 °C. The effect of the addition of Ti substituting Zr and the sintering temperature was studied. The Ceramic with x =0.1 sintered at 1450 °C, the SrZr4-xTix(PO4)6 had a high relative density. The thermal expansion coefficients were about 3.301×10-6 °C-1. It was demonstrated that the microstructure of the SrZr4-xTix(PO4)6 could be altered by adding varying amount of Ti to tailor the thermophysical properties of the material.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. S. Madhusudhan Rao ◽  
K. Narender

The study on temperature dependent γ-ray attenuation and thermophysical properties of CaO and MgO has been carried out in the temperature range 300 K–1250 K using different energies of γ-beam, namely, Am (0.0595 MeV), Cs (0.66 MeV), and Co (1.173 MeV and 1.332 MeV) on γ-ray densitometer fabricated in our laboratory. The linear attenuation coefficients (μl) for the pellets of CaO and MgO as a function of temperature have been determined using γ-beam of different energies. The coefficients of temperature dependence of density have been reported. The variation of density and linear thermal expansion of CaO and MgO in the temperature range of 300 K–1250 K has been studied and compared with the results available in the literature. The temperature dependence of linear attenuation coefficients, density, and thermal expansion has been represented by second degree polynomial. Volume thermal expansion coefficients have been reported.


Two areas of development in the field of glasses and ceramics have produced new materials with unusual combinations of properties. Glass-ceramics are melted and formed as glasses by conventional glass-forming techniques, but by a subsequent heat treatment, they are converted to fine-grained crystalline structures with new and useful combinations of properties. Products with thermal expansion coefficients approaching zero and flexural strengths ranging from 10 000 to 50 000 Lb./in. 2 have been made though not all combinations of low thermal expansion coefficients and high mechanical strengths are possible. The second area of development is in so-called Chemcor glasses. Such glass products can be preferentially pre-stressed by chemical means so as to produce an outer layer with high compressive stress and a bending strength in the finished product up to 100 000 Lb/in. 2 .


2007 ◽  
Vol 280-283 ◽  
pp. 995-998
Author(s):  
Y.M. Zhu ◽  
Xia Wan Wu ◽  
Zhi Hong Li

In order to reduce the raw materials cost, lower the sintering temperature of 3Y-TZP optical fiber ferrules, the 3Y-TZP/ LAS glass ceramics composites were prepared and their properties were investigated in this paper. The results showed that the sintering temperatures and thermal expansion coefficients of the 3Y-TZP/LAS glass ceramics composites were lowered with the increase of glass content. The flexural strength of the composites were decreased with the increase of glass content, but the flexural strength of the composite with 15% weight glass was higher than 400MPa. The LAS glass powder added into the composites was crystallized and b-spodumene s.s was precipitated. during sintering. The b-spodumene s.s. having lower thermal expansion coefficient and higher strength was beneficial to reduce thermal expansion coefficients and keep higher strengths of the composites .


2008 ◽  
Vol 368-372 ◽  
pp. 1662-1664 ◽  
Author(s):  
X.L. Xiao ◽  
M.M. Wu ◽  
J. Peng ◽  
Y.Z. Cheng ◽  
Zhong Bo Hu

Compounds Yb2Mo3O12 and Lu2Mo3O12 were prepared by conventional solid-state reaction. Their crystal structures and thermal expansion properties were investigated. It was found that Yb2Mo3O12 and Lu2Mo3O12 adopt orthorhombic structure and show negative thermal expansion (NTE) in the temperature range of 200-800 °C. Their a-axis and c-axis exhibit stronger contraction in the temperature range of 200-800 °C, while b-axis slightly expands in the temperature range of 200-300 °C and then contracts in the temperature range of 300-800 °C. The linear thermal expansion coefficients al of Yb2Mo3O12 and Lu2Mo3O12 are −5.17 × 10−6 °C−1 and −5.67 × 10−6 °C−1, respectively.


1995 ◽  
Vol 73 (4) ◽  
pp. 513-521 ◽  
Author(s):  
Darek Michalski ◽  
Mary Anne White ◽  
Pradip K. Bakshi ◽  
T. Stanley Cameron ◽  
Ian Swainson

The crystal structures of hexakis(phenylthio)benzene (HPTB) and its CBr4 clathrate have been determined by single crystal X-ray diffraction data collected at T = 18 °C and refined to final Rw of 0.036 and 0.047, respectively. Pure HPTB is triclinic, space group [Formula: see text] (No. 2), with a = 9.589(2) Å, b = 10.256(1) Å, c = 10.645(2) Å, α = 68.42(1)°, β = 76.92(2)°, γ = 65.52(1)°, and Z = 1. The CBr4 clathrate of HPTB is rhombohedral, space group [Formula: see text] (No. 148), with a = 14.327(4) Å, b = 20.666(8) Å, and Z = 3. The host–guest mole ratio of HPTB–CBr4 is 1:2. Neutron powder diffraction was carried out on powders of both compounds in the temperature range 25 K < T < 295 K. Thermal expansion coefficients were determined for HPTB and HPTB–CBr4 over this temperature range. Keywords: thermal expansion, crystal structure, clathrate.


2017 ◽  
Vol 373 ◽  
pp. 146-149
Author(s):  
Wen Deng ◽  
Li Xia Li ◽  
Shou Lei Xu ◽  
Wen Chun Zhang ◽  
Yu Yang Huang ◽  
...  

The microdefects, the thermal expansion coefficients and the magnetization -temperature curves of the Fe64Ni36-xCox (x=1~10) were characterized by means of positron lifetime, X-ray diffraction, Michelson's interferometer and VSM modular on PPMS, respectively. The Fe64Ni30Co6 alloy is a mixture of BCC and FCC structures. With the Co content increasing in Fe64Ni36-xCox alloys, the BCC phase increases, while the FCC phase decreases. In comparison with other Fe64Ni36-xCox alloys, the Fe64Ni31Co5 alloy has a rather high magnetization at temperature lower than Tc, a relatively large change of the magnetization with the temperature near Tc, and a rather low thermal expansion coefficient.


2006 ◽  
Vol 321-323 ◽  
pp. 67-70 ◽  
Author(s):  
Khaled Habib

In the present work, thermal expansion coefficients of a number of organic coatings were studied by a non-destructive technique (NDT) known as shearography. An organic coating, i.e., epoxy, on a metallic alloy, i.e., carbon steels, was investigated at a temperature range simulating the severe weather temperatures in Kuwait especially between the daylight and the night time temperatures, 20-60 0C. The investigation focused on determining the in-plane displacement of the coating, which amounts to the thermal deformation (strain ) with respect to the applied temperature range. Along with the experimental data, a mathematical relationship was derived describing the thermal deformation of a coated film as a function of temperature. Furthermore, results of shearography indicate that the technique is very useful NDT method not only for determining the thermal expansion coefficients of different coatings, but also the technique can be used as a 2Dmicroscope for monitoring the deformation of the coatings in real-time at a submicroscopic scale.


2013 ◽  
Vol 341-342 ◽  
pp. 69-73
Author(s):  
Long Su ◽  
Wan Mei Sui ◽  
Yu Jie Liu

CaZr4(PO4)6 ceramics were prepared with solid reaction of two-steps method. CaZr4(PO4)6 powders were synthesized by solid-phase reaction with Ca (OH)2, ZrO2 and (NH4)2HPO4 as raw materials. Then the powders precursor were sintered to CaZr4(PO4)6 ceramics with single phase structure at 1400°C for 8 hours. The relative density was measured, the phase structure of the materials synthesized at different temperatures and the average coefficients of thermal expansion were investigated. The results showed that the relative density of CaZr4(PO4)6 ceramics sintered at 1400°C was 93%. The average thermal expansion coefficients was 1.8×10-6/°C from 25°C to 1400°C. The CaZr4(PO4)6 ceramics obtained possesses low thermal expansion property in a broad range of temperatures.


1992 ◽  
Vol 286 ◽  
Author(s):  
Wen-C. Chiang ◽  
Soo-Kil Kim ◽  
David V. Baxter

ABSTRACTWe have studied the structure of W-Cu multilayers with modulation wavelengths between 65 and 110 xsÅ over the temperature range 25-400° C. Using a high temperature diffractometer stage specifically designed for low angle work, thermal expansion coefficients were measured and found to be marginally greater than would be expected from bulk behavior even when interaction with the substrate is taken into account. Upon annealing at temperature as low as 180° C, increased intensity of the low angle superlattice peaks is observed. Heat treatments above 180° C result in an irreversible change in the multilayer associated with the migration of Cu atoms to cracks produced by thermally induced stresses.


Sign in / Sign up

Export Citation Format

Share Document