Density, Viscosity, Thermal Expansion Coefficients and Heat Capacity Ratios of an Environmentally Hazardous Dye Tartrazine in Aqueous Solutions in the Temperature Range 293.15–333.15 K

Author(s):  
Pavan Kumar Gautam ◽  
Ravindra Kumar Gautam ◽  
Rama Shankar Saroj ◽  
J. D. Pandey
2018 ◽  
Vol 281 ◽  
pp. 169-174
Author(s):  
Yang Wang ◽  
Yuan Yuan Song ◽  
Yuan Yuan Zhou ◽  
Lu Ping Yang ◽  
Fu Tian Liu

Low thermal expansion ceramics have been widely applied in multiple fields. In this paper, a series of low thermal expansion ceramics SrZr4-xTix(PO4)6 was prepared and characterized. The SrZr4-xTix(PO4)6 ceramics could be well sintered in the temperature range of 1400~1500 °C. The effect of the addition of Ti substituting Zr and the sintering temperature was studied. The Ceramic with x =0.1 sintered at 1450 °C, the SrZr4-xTix(PO4)6 had a high relative density. The thermal expansion coefficients were about 3.301×10-6 °C-1. It was demonstrated that the microstructure of the SrZr4-xTix(PO4)6 could be altered by adding varying amount of Ti to tailor the thermophysical properties of the material.


2008 ◽  
Vol 368-372 ◽  
pp. 1662-1664 ◽  
Author(s):  
X.L. Xiao ◽  
M.M. Wu ◽  
J. Peng ◽  
Y.Z. Cheng ◽  
Zhong Bo Hu

Compounds Yb2Mo3O12 and Lu2Mo3O12 were prepared by conventional solid-state reaction. Their crystal structures and thermal expansion properties were investigated. It was found that Yb2Mo3O12 and Lu2Mo3O12 adopt orthorhombic structure and show negative thermal expansion (NTE) in the temperature range of 200-800 °C. Their a-axis and c-axis exhibit stronger contraction in the temperature range of 200-800 °C, while b-axis slightly expands in the temperature range of 200-300 °C and then contracts in the temperature range of 300-800 °C. The linear thermal expansion coefficients al of Yb2Mo3O12 and Lu2Mo3O12 are −5.17 × 10−6 °C−1 and −5.67 × 10−6 °C−1, respectively.


1995 ◽  
Vol 73 (4) ◽  
pp. 513-521 ◽  
Author(s):  
Darek Michalski ◽  
Mary Anne White ◽  
Pradip K. Bakshi ◽  
T. Stanley Cameron ◽  
Ian Swainson

The crystal structures of hexakis(phenylthio)benzene (HPTB) and its CBr4 clathrate have been determined by single crystal X-ray diffraction data collected at T = 18 °C and refined to final Rw of 0.036 and 0.047, respectively. Pure HPTB is triclinic, space group [Formula: see text] (No. 2), with a = 9.589(2) Å, b = 10.256(1) Å, c = 10.645(2) Å, α = 68.42(1)°, β = 76.92(2)°, γ = 65.52(1)°, and Z = 1. The CBr4 clathrate of HPTB is rhombohedral, space group [Formula: see text] (No. 148), with a = 14.327(4) Å, b = 20.666(8) Å, and Z = 3. The host–guest mole ratio of HPTB–CBr4 is 1:2. Neutron powder diffraction was carried out on powders of both compounds in the temperature range 25 K < T < 295 K. Thermal expansion coefficients were determined for HPTB and HPTB–CBr4 over this temperature range. Keywords: thermal expansion, crystal structure, clathrate.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. S. Madhusudhan Rao ◽  
K. Narender

The study on temperature dependent γ-ray attenuation and thermophysical properties of CaO and MgO has been carried out in the temperature range 300 K–1250 K using different energies of γ-beam, namely, Am (0.0595 MeV), Cs (0.66 MeV), and Co (1.173 MeV and 1.332 MeV) on γ-ray densitometer fabricated in our laboratory. The linear attenuation coefficients (μl) for the pellets of CaO and MgO as a function of temperature have been determined using γ-beam of different energies. The coefficients of temperature dependence of density have been reported. The variation of density and linear thermal expansion of CaO and MgO in the temperature range of 300 K–1250 K has been studied and compared with the results available in the literature. The temperature dependence of linear attenuation coefficients, density, and thermal expansion has been represented by second degree polynomial. Volume thermal expansion coefficients have been reported.


2006 ◽  
Vol 321-323 ◽  
pp. 67-70 ◽  
Author(s):  
Khaled Habib

In the present work, thermal expansion coefficients of a number of organic coatings were studied by a non-destructive technique (NDT) known as shearography. An organic coating, i.e., epoxy, on a metallic alloy, i.e., carbon steels, was investigated at a temperature range simulating the severe weather temperatures in Kuwait especially between the daylight and the night time temperatures, 20-60 0C. The investigation focused on determining the in-plane displacement of the coating, which amounts to the thermal deformation (strain ) with respect to the applied temperature range. Along with the experimental data, a mathematical relationship was derived describing the thermal deformation of a coated film as a function of temperature. Furthermore, results of shearography indicate that the technique is very useful NDT method not only for determining the thermal expansion coefficients of different coatings, but also the technique can be used as a 2Dmicroscope for monitoring the deformation of the coatings in real-time at a submicroscopic scale.


1992 ◽  
Vol 286 ◽  
Author(s):  
Wen-C. Chiang ◽  
Soo-Kil Kim ◽  
David V. Baxter

ABSTRACTWe have studied the structure of W-Cu multilayers with modulation wavelengths between 65 and 110 xsÅ over the temperature range 25-400° C. Using a high temperature diffractometer stage specifically designed for low angle work, thermal expansion coefficients were measured and found to be marginally greater than would be expected from bulk behavior even when interaction with the substrate is taken into account. Upon annealing at temperature as low as 180° C, increased intensity of the low angle superlattice peaks is observed. Heat treatments above 180° C result in an irreversible change in the multilayer associated with the migration of Cu atoms to cracks produced by thermally induced stresses.


1906 ◽  
Vol 25 (1) ◽  
pp. 281-291 ◽  
Author(s):  
George A. Carse

AbstractIn a paper communicated to the Nova Scotian Institute of Natural Science,* Professor MacGregor has shown that in the case of weak aqueous solutions of certain hydroxides, the volume of a solution is less than the volume of water used in its preparation. At his suggestion I have investigated the hydroxides of sodium, barium, and strontium, to ascertain whether they exhibit this property, and how the excess of the volume of solution over the volume of constituent water varies with the temperature. From the observations made, I have also determined the thermal expansion coefficients, and found how they vary with temperature and with concentration.


1965 ◽  
Vol 43 (7) ◽  
pp. 1328-1333 ◽  
Author(s):  
D. A. Channing ◽  
S. Weintroub

The linear thermal expansion coefficients αψ of two single crystals of Zn of orientations ψ = 10.8° and 63.9 ° with the hexad axis were measured over the temperature range of about 20–270 °K using an absolute Fizeau optical interference technique. The two principal coefficients, [Formula: see text] and [Formula: see text], corresponding to ψ = 0° and 90 ° respectively, were calculated from the Voigt relation, and their values are compared with previously reported experimental data. Above 60 °K there is good agreement with previous work, and below 60 °K the results confirm, in general, the data obtained by McCammon and White. The Grüneisen parameter γ is essentially constant at about 2.1 in the range 100–270 °K, but below 100 °K γ rises appreciably with decreasing temperature and reaches the value of about 3.5 at 20 °K.


Sign in / Sign up

Export Citation Format

Share Document