Removal of CrN Contamination from EUV Mask Backside Using Dry Cleaning

2018 ◽  
Vol 282 ◽  
pp. 59-63
Author(s):  
Hyun Tae Kim ◽  
Nagendra Prasad Yerriboina ◽  
Hee Jin Song ◽  
Jin Goo Park

For EUV lithography, a reflective mask is essential because of use of the strong energy, wavelength of 13.5 nm. The EUV mask consists of multi-layered, multi-material structure and is susceptible to various contaminants. Since EUV lithography process should be used in a high vacuum environment, an electrostatic chuck (ESC) is used to fix or hold the EUV mask using electrostatic force. In general, in order to use ESC chuck, it needs a thin conductive layer (CrN layer) on the backside. However, the contact points of the electrostatic pin chuck can make exfoliation of conductive CrN layer producing CrN particles. If these particles are present on the backside of the mask, CD or DOF may be affected during EUV exposure. The 1 μm particle can leads to a gap radius of 42mm [4]. Moreover, these backside particles may travel to the front side. Therefore, backside cleaning should be performed to remove particles from the mask backside surface.

Author(s):  
Elizabeth Buitrago ◽  
Tero S. Kulmala ◽  
Roberto Fallica ◽  
Yasin Ekinci

Author(s):  
Yuya Kamei ◽  
Shinichiro Kawakami ◽  
Masahide Tadokoro ◽  
Yusaku Hashimoto ◽  
Takeshi Shimoaoki ◽  
...  

1987 ◽  
Vol 102 ◽  
Author(s):  
M. Cerullo ◽  
Julia M. Phillips ◽  
M. Anzlowar ◽  
L. Pfeiffer ◽  
J. L. Batstone ◽  
...  

ABSTRACTA new in-situ rapid thermal annealing (RTA) apparatus which can be used to anneal entire wafers in an ultra high vacuum environment has been designed to be used in conjunction with the epitaxial growth of heterostructures. Drastic improvement in the crystallinity of CaF2/Si(100) can be achieved with RTA, and our results suggest that RTA can be used as an on-line processing technique for novel epitaxial structures.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
U. Even

Pulsed beams, originating from a high pressure, fast acting valve equipped with a shaped nozzle, can now be generated at high repetition rates and with moderate vacuum pumping speeds. The high intensity beams are discussed, together with the skimmer requirements that must be met in order to propagate the skimmed beams in a high-vacuum environment without significant disruption of the beam or substantial increases in beam temperature.


2017 ◽  
Vol 21 (2) ◽  
pp. 989-1002 ◽  
Author(s):  
Jinsheng Cui ◽  
Xuyan Hou ◽  
Zongquan Deng ◽  
Wanjing Pan ◽  
Qiquan Quan

In this article, the temperature of a sampling drill in drilling lunar rock simulant in a high-vacuum environment was studied. The thermal problem was viewed as a 1-D transient heat transfer problem in a semi-infinite object. The simplified drill was modeled using heat conduction differential equation and a fast numerical calculation method is proposed on this basis, with time and the drill discretized. The model was modified to consider the effects of radiation, drill bit configuration, and non-constant heat source. A thermal analysis was conducted using ANSYS Workbench to determine the value of the equivalent correction coefficient proposed in this paper. Using fiber Bragg grating temperature measurement method, drilling experiments were conducted in a vacuum, and the results were compared to the model. The agreement between model and experiment was very good.


Sign in / Sign up

Export Citation Format

Share Document