scholarly journals Pulsed Supersonic Beams from High Pressure Source: Simulation Results and Experimental Measurements

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
U. Even

Pulsed beams, originating from a high pressure, fast acting valve equipped with a shaped nozzle, can now be generated at high repetition rates and with moderate vacuum pumping speeds. The high intensity beams are discussed, together with the skimmer requirements that must be met in order to propagate the skimmed beams in a high-vacuum environment without significant disruption of the beam or substantial increases in beam temperature.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3402
Author(s):  
Jan Slacik ◽  
Petr Mlynek ◽  
Martin Rusz ◽  
Petr Musil ◽  
Lukas Benesl ◽  
...  

The popularity of the Power Line Communication (PLC) system has decreased due to significant deficiencies in the technology itself, even though new wire installation is not required. In particular, regarding the request for high-speed throughput to fulfill smart-grid requirements, Broadband Power Line (BPLC) can be considered. This paper approaches PLC technology as an object of simulation experimentation in the Broadband Power Line Communication (BPLC) area. Several experimental measurements in a real environment are also given. This paper demonstrates these experimental simulation results as potential mechanisms for creating a complex simulation tool for various PLC technologies focusing on communication with end devices such as sensors and meters. The aim is to demonstrate the potential and limits of BPLC technology for implementation in Smart Grids or Smart Metering applications.


2014 ◽  
Vol 953-954 ◽  
pp. 66-73
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

This paper presents the design of a solar/gas driving double effect LiBr-H2O absorption system. In order to use solar energy more efficiently, a new kind of solar/gas driving double effect LiBr-H2O absorption system is designed. In this system, the high-pressure generator is driven by conventional energy, natural gas, and solar energy together with water vapor generated in the high-pressure generator, which supplies energy to the low-pressure generator for a double effect absorption system. Simulation results illustrate that this kind of system is feasible and economical. Economic evaluation of several systems is also given in this paper in order to get a clear knowledge of the energy consumption of the system.


2018 ◽  
Vol 282 ◽  
pp. 59-63
Author(s):  
Hyun Tae Kim ◽  
Nagendra Prasad Yerriboina ◽  
Hee Jin Song ◽  
Jin Goo Park

For EUV lithography, a reflective mask is essential because of use of the strong energy, wavelength of 13.5 nm. The EUV mask consists of multi-layered, multi-material structure and is susceptible to various contaminants. Since EUV lithography process should be used in a high vacuum environment, an electrostatic chuck (ESC) is used to fix or hold the EUV mask using electrostatic force. In general, in order to use ESC chuck, it needs a thin conductive layer (CrN layer) on the backside. However, the contact points of the electrostatic pin chuck can make exfoliation of conductive CrN layer producing CrN particles. If these particles are present on the backside of the mask, CD or DOF may be affected during EUV exposure. The 1 μm particle can leads to a gap radius of 42mm [4]. Moreover, these backside particles may travel to the front side. Therefore, backside cleaning should be performed to remove particles from the mask backside surface.


2018 ◽  
Vol 25 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Philip Heimann ◽  
Stefan Moeller ◽  
Sergio Carbajo ◽  
Sanghoon Song ◽  
Georgi Dakovski ◽  
...  

For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.


In the present paper an account is given of experimental measurements on the electrical conductivity of thin films of mercury prepared by evaporative deposition in a high vacuum according to the technique described in previous papers (Lovell 1936; Appleyard and Lovell 1937). In a brief preliminary note (Appleyard 1937) we have pointed out that the results for mercury are very different from those for the alkali metals, and that in particular a considerable thickness of mercury must be deposited on the pyrex surface before conductivity begins. We have since confirmed and extended these observations, obtained accurate absolute values for the thickness of the films, investigated their stability, and made an extended study of their temperature coefficients after heat treatment. A comparison with the results of previous workers is given later.


2019 ◽  
Vol 64 (9) ◽  
pp. 3994-4004 ◽  
Author(s):  
Rachid Aitbelale ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahib Eddine ◽  
Natalia Muñoz Rujas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document