Effect of Process Parameters on Quality of Ti-6Al-4V Multi-Layer Single Pass Wall during Direct Laser Deposition with Beam Oscillation

2020 ◽  
Vol 299 ◽  
pp. 716-722 ◽  
Author(s):  
S.A. Shalnova ◽  
O.G. Klimova-Korsmik ◽  
G.A. Turichin ◽  
M.O. Gushchina

In this paper, the effect of process parameters on quality of fabricated wall, the phase composition, microhardness, and mechanical properties of the Ti-6Al-4V titanium sample, obtained by direct laser deposition, was considered. To determine the characteristics of the samples the X-ray diffraction, scanning electron microscopy, Vickers microhardness measurements, and uniaxial tensile tests were used. It is shown that the process parameters with the same speed, oscillation amplitude and peak value of heat flux have a similar wall thickness but different waviness with high mechanical properties.

CIRP Annals ◽  
2010 ◽  
Vol 59 (1) ◽  
pp. 211-214 ◽  
Author(s):  
M. Schmidt ◽  
R. Kolleck ◽  
A. Grimm ◽  
R. Veit ◽  
K. Bartkowiak

2021 ◽  
Vol 8 ◽  
Author(s):  
Stéphanie Delannoy ◽  
Sarah Baïz ◽  
Pascal Laheurte ◽  
Laurence Jordan ◽  
Frédéric Prima

The objective of this study was to develop a thermo-mechanical strategy to create a radial elasticity gradient in a β metastable Ti-Nb-Zr alloy, and to characterize it in terms of microstructural and mechanical properties. A first investigation was conducted on thin samples of Ti-20Nb-6Zr (at.%) submitted to various thermo-mechanical treatments. Microstructure-properties relationships and elastic variability of this alloy were determined performing uniaxial tensile tests, X-ray diffraction and scanning and transmission electron microscopies. Based on these preliminary results, mechanical deformation was identified as a potential way to lower the elastic modulus of the alloy. In order to create elastically graded pieces, shot-peening was therefore carried out on thicker samples to engender surface deformation. In this second part of the work, local mechanical properties were evaluated by instrumented micro-indentation. Experimental observations demonstrated that shot-peening enabled to locally induce martensitic transformation on surface, and a decrease in indentation elastic modulus from 85 to 65 GPa over 400 μm was highlighted. Surface deformation proved to be an efficient way of creating an elasticity gradient in β metastable titanium alloys. This combination of material and process could be suitable to produce dental implants with mechanically enhanced biocompatibility.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 926
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodriguez ◽  
Pablo García-Fogeda ◽  
Joaquín Rams

Aluminium matrix composite coatings reinforced with AlN nanopaticles have been manufactured by direct laser deposition on an AA6082 alloy substrate. The reinforcement of the composite has been generated by the direct nitridation reaction of the feed powder with the carrier gas (N2) heated by an HPDL beam during the fabrication of the coating. The coating obtained consists of nano-sized AlN particles in an aluminium matrix, and the crystalline structure of the obtained AlN depends on the characteristics of the powder used. In this work, the influence of the feed powder composition is studied by comparison among pure aluminium, Al12-Si alloy, and AA6061 alloy, on the formation of AlN and its crystalline structure. A correlation was established between the temperature distribution reached by the particles, their composition, and the nitridation reaction mechanisms. The effect of the reinforcement was evaluated by comparing the microstructure and mechanical properties (microhardness, nanoindentation) of the composite costing with non-reinforced Al coatings and uncoated AA6082. Al/AlN composite coatings with improved properties were achieved, reaching hardness values that were 65% higher than coatings without reinforcement.


2019 ◽  
Vol 822 ◽  
pp. 418-424 ◽  
Author(s):  
Y.A. Bistrova ◽  
E.A. Shirokina ◽  
R.V. Mendagaliev ◽  
M.O. Gushchina ◽  
A. Unt

Review focuses on describing of mechanical properties of the components manufactured via direct laser depositionfrom cold resistant steel material. The results of tensile and impact testing are presented and microstructures of the fractures are shown. The process of laser deposition of cold-resistant steels, the formation of structures, as well as the mechanical properties of these samples are poorly understood. The results of tensile and impact tests are presented, and microstructures are shown. Mechanical tests for impact strength were carried out at a temperature of -40˚С, with different laser radiation powers. The results are given using the as-received powder, as well as used powder with a different mixing ratio, and the results are analyzed. As a result of the study, it was found that the fractional composition of the 09XH2MD alloy powder affects the mechanical characteristics of samples obtained by direct laser deposition. The effect of recycled powder on the mechanical properties of the obtained samples is given, the optimal laser deposition regimes are selected


Sign in / Sign up

Export Citation Format

Share Document