The Effects of Floor Structures on the Masonry Walls of Multistorey Building

2021 ◽  
Vol 322 ◽  
pp. 117-126
Author(s):  
Luděk Vejvara

In this contribution, the determination of loading forces in the joint of the floor structure and masonry is presented. The point is a subject being accompanied by designing multistorey masonry buildings.The problem of this apparently simple assignment is not so much a calculation of values from characteristic loading of both floors and walls or an actual numerical calculation of masonry carrying capacity, but a correct stipulation of the resultant force location at the spot under the floor structure.In the paper, the resting types of reinforced concrete floor structure on the masonry, influences on the resultant force magnitude, its position to the mid-masonry and consequences for the masonry construction design. The resting examples of floor structures, exhibitions of calculation, and schemas are given. Auxiliary tables and charts to specify the moments in the head of masonry were made up. In conclusion, a recommendation to the optimal span of floor structure destined for masonry construction is stated.

Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


1991 ◽  
Vol 56 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Takashi Kakiuchi ◽  
Mitsugi Senda

We have estimated the degree of polarizability of a polarized oil-water interface used as a working interface and that of the nonpolarizability of a nonpolarized interface used as a reference oil-water interface from the numerical calculation of dc and ac current vs potential behavior at both interfaces. Theoretical equations of dc and ac currents for simultaneous cation and anion transfer of supporting electrolytes have been derived for the planar stationary interface for reversible and quasi-reversible cases. In the derivation, the migration effect and the coupling of the cation and anion transfer have been incorporated. The transfer of ions constituting a supporting electrolyte contributes to the total admittance of the interface even in the region where the interface may be considered as polarized in dc sense, as pointed out first by Samec et al. (J. Electroanal. Chem. 126, 121 (1981)). Moreover, the reference oil-water interface is not ideally reversible, so that the contribution from this interface to the measured admittance cannot be negligible, unless the area of the reference oil-water interface is much larger than that of the working oil-water interface. The effect of non-ideality of the reference oil-water interface on the determination of double layer capacitances and kinetic parameters of charge transfer at the working oil-water interface has been estimated.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Leszek Czechowski

The paper deals with an examination of the behaviour of glued Ti-Al column under compression at elevated temperature. The tests of compressed columns with initial load were performed at different temperatures to obtain their characteristics and the load-carrying capacity. The deformations of columns during tests were registered by employing non-contact Digital Image Correlation Aramis® System. The numerical computations based on finite element method by using two different discrete models were carried out to validate the empirical results. To solve the problems, true stress-logarithmic strain curves of one-directional tensile tests dependent on temperature both for considered metals and glue were implemented to software. Numerical estimations based on Green–Lagrange equations for large deflections and strains were conducted. The paper reveals the influence of temperature on the behaviour of compressed C-profile Ti-Al columns. It was verified how the load-carrying capacity of glued bi-metal column decreases with an increase in the temperature increment. The achieved maximum loads at temperature 200 °C dropped by 2.5 times related to maximum loads at ambient temperature.


2021 ◽  
Vol 334 ◽  
pp. 02025
Author(s):  
Konstantin Esin ◽  
Andrei Bodrov ◽  
Denis Lomakin ◽  
Maxim Kulev ◽  
Andrew Kulev

The paper deals with the mathematical model of the rational distribution of vehicles, which allows attaching them to a group of combine harvesters during harvesting, depending on the carrying capacity of vehicles, the productivity of combine harvesters and the capacity of grain storage facilities. In addition, it presents a formula which allows determining the required number of vehicles that will deliver grain from a group of combine harvesters. Further the article presents calculations of routes of vehicles movement and determination of the required number of vehicles de-pending on the carrying capacity of one of the operating agricultural organizations.


2018 ◽  
Vol 159 ◽  
pp. 46-54 ◽  
Author(s):  
Gi Young Jeong ◽  
Jin Hyuk Kong ◽  
So Sun Lee
Keyword(s):  

Author(s):  
Ashraf Ragab Mohamed

Corrosion of reinforcement is considered as the major cause of most deteriorated concrete structures. As reinforcement corrodes, the load carrying capacity is affected and hence, the probability of failure increases. At the time of inspection of deteriorated structures, engineers are faced with the problem whether the available steel is enough to secure the safety of the structural member. This chapter addresses this problem based on reliability-based approach to evaluate the safety of the deteriorated members due to uniform corrosion under bending. A methodology is proposed to facilitate the determination of the member reliability index based on basic material properties and current loading. A step-by-step procedure is proposed based on charts developed in this study according to the Egyptian code provisions.


Sign in / Sign up

Export Citation Format

Share Document