Short-Term Oxidation Behavior, Microstructure Evolution and Compression Behavior of Nickel-Based Superalloy GH4037 in Solid and Semi-Solid States

2022 ◽  
Vol 327 ◽  
pp. 11-25
Author(s):  
Guan Fei Xiao ◽  
Ju Fu Jiang ◽  
Ying Wang ◽  
Ying Zhe Liu ◽  
Ying Zhang ◽  
...  

Semi-solid processing combines the advantages of traditional forging and casting methods, so it has received much attention recently. However, the research on semi-solid behaviors of Nickel-based superalloys has been rarely reported. In order to investigate the behaviors of Nickel-based superalloy at solid and semi-solid states, oxidation experiments, isothermal treatment experiments and deformation experiments of GH4037 alloy were studied. Short-term oxidation experiments of GH4037 alloy were carried out at a solid temperature (1200 °C) and a semi-solid temperature (1360 °C). The results indicated that the oxides formed at 1200 °C were mainly composed of TiO2, Cr2O3 and a small amount of spinels NiCr2O4, while the oxides formed at 1360 °C consisted of the spinels of NiCr2O4, NiWO4 and NiMoO4 besides TiO2 and Cr2O3. Microstructure evolution of GH4037 alloy after semi-solid isothermal treatment at 1370 °C and 1380 °C was studied. The results indicated that semi-solid microstructures consisted of equiaxed solid grains and liquid phases. The average grains size and shape factor of solid grains were affected by melting mechanism and grain growth mechanism. Compression behaviors of GH4037 alloy after compressed at 1200 °C and 1360 °C were investigated. The results indicated that the flow stress of 1360 °C decreased significantly compared to that of 1200 °C. The deformation zones in the specimens were divided into three parts: the difficult deformation zone, the large deformation zone, and the free deformation zone. At 1200 °C, the deformation mechanism was plastic deformation mechanism. At 1360 °C, sliding between solid particles (SS), liquid flow (LF), flow of liquid incorporating solid particles (FLS), plastic deformation of solid particles (PDS) coexisted in the compression specimen.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4668
Author(s):  
Guanfei Xiao ◽  
Jufu Jiang ◽  
Ying Wang ◽  
Yingze Liu ◽  
Ying Zhang ◽  
...  

Semi-solid billets of GH3536 alloy were prepared by semi-solid isothermal treatment of wrought superalloy method. GH3536 samples were soaked at several semi-solid temperatures (1350 °C, 1360 °C, 1364 °C, and 1367 °C) for 5–120 min. The effects of temperature and soaking time on the microstructure of GH3536 billets were studied. The results indicated that the microstructure was affected by coalescence mechanism, Ostwald ripening mechanism, and breaking up mechanism. Semi-solid microstructure of GH3536 alloy was composed of spherical solid particles and liquid phases, and the liquid phases affected the microstructure greatly. At 1350 °C, the coalescence mechanism was dominant at the early stage of isothermal treatment, then the Ostwald ripening mechanism played a major role for the longer soaking times. At higher temperatures, the breaking up mechanism occurred to form large irregular grains and small spherical grains. As the heating continued, the Ostwald ripening mechanism was dominant. However, at 1364 °C and 1367 °C, the solid grains had irregular shapes and large sizes when the isothermal time was 120 min. The optimum parameters for the preparation of GH3536 semi-solid billets were: temperature of 1364–1367 °C and soaking time of 60–90 min.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 194
Author(s):  
Yongfei Wang ◽  
Shengdun Zhao ◽  
Yi Guo ◽  
Kuanxin Liu ◽  
Shunqi Zheng

Al-Mg-Si based alloys are popular alloys used in the automotive industry. However, limited studies have been performed to investigate the microstructure, deformation characteristics, and deformation mechanism for the semi-solid 6063 alloys. In this study, the cold radial forging method and semi-solid isothermal treatment (SSIT) are proposed in the semi-solid isothermal compression (SSIC) process to fabricate high-quality semi-solid 6063 billets. The effects of deformation temperature, strain rate, and strain on the microstructure, deformation characteristics, and deformation mechanism of the SSIC of cold radial forged 6063 alloys were investigated experimentally. Constitutive equations were established based on the measured data in experiments to predict the flow stress. Results show that an average grain size in the range from 59.22 to 73.02 μm and an average shape factor in the range from 071 to 078 can be obtained in the microstructure after the cold radial forged 6063 alloys were treated with SSIT process. Four stages (i.e., sharp increase, decrease, steady state, and slow increase) were observed in the true stress- true strain curve. The correlation coefficient of the constitutive equation was obtained as 0.9796 while the average relative error was 5.01%. The deformation mechanism for SSIC of cold radial forged aluminum alloy 6063 mainly included four modes: The liquid phase flow, grain slide or grain rotation along with the liquid film, slide among solid grains, and the plastic deformation of solid grains.


2019 ◽  
Vol 285 ◽  
pp. 398-402 ◽  
Author(s):  
Hong Zhang ◽  
Da Quan Li ◽  
Wen Ying Qu ◽  
Fan Zhang ◽  
Min Luo ◽  
...  

Controlling the morphology of the microstructure of the slurry is important during semi-solid die casting. For this project, semi-solid slugs were produced using the SEED (Swirled Enthalpy Equilibrium Device) process, where a fully liquid metal is poured into a steel crucible and cooled into the semi-solid temperature range, and the crucible and slurry are then swirled and cooled to the appropriate temperature (and solid fraction) for semi-solid casting. The pouring temperature of the melt into the crucible during SEED processing has been shown to influence the morphology and size of the aluminum solid particles within the slurry, which can influence the distribution and segregation of the solid particles during die casting. In this study, a specially-designed die with a serpentine-shaped flow channel has been used to study the distribution of the solid particles during semi-solid die casting. The experimental results show that a dendritic structure is formed when the liquid is poured from a high temperature, while a globular semi-solid morphology is more easily formed when poured from a low superheat. The current results also show that a dendritic structure leads to severe segregation during die casting.


2019 ◽  
Vol 285 ◽  
pp. 105-110
Author(s):  
Guan Fei Xiao ◽  
Ju Fu Jiang ◽  
Ying Wang ◽  
Ying Zhe Liu

The research on semisolid metal forming of Ni-based superalloys is limited because of the difficulties in preparing semisolid billets. Traditional methods for fabricating semisolid billets are SIMA and RAP. In order to decrease the processing procedures, a new method called semi-solid isothermal treatment of wrought superalloy (SSITWS) was used to fabricate semisolid billets in this paper. In order to get the optimal parameters to fabricate Ni-based GH4037 semisolid billets, the effects of isothermal temperature and soaking time on microstructure evolution were investigated. The isothermal temperature ranges from solidus to liquidus, and the soaking time ranges from 10min to 60min. The results show that near-globular grains can be obtained only in the semi-solid state with appropriate solid fractions. When the solid fraction was high, the shape of grains was irregular and the average size of grains was large and inhomogeneous. When the isothermal temperature reached 1350°C, spherical grains appeared, and many small intragranular liquid droplets existed. During the appropriate isothermal temperature range, from 1350°C to 1380°C, the shape of solid grains was globular and the size of solid grains was homogeneous. At the same time, the size of the grains and the roundness of the grains increased with the increasing of isothermal temperature.


2014 ◽  
Vol 1030-1032 ◽  
pp. 86-89
Author(s):  
Bo Xing

A research field on semi-solid metal processing is the preparation of semi-solid slurry with non-dendritic microstructure. Nowadays, with the technological innovation of semi-solid slurry preparation, people turn to produce the non-dendritic semisolid microstructure by locally cooling of the alloy melt during solidification. Therefore, it is necessary to investigate the formation mechanism of the non-dendritic microstructure formation because the primary phase undergoes a specially controlled nucleation and growth which distinctly different from the commom solidification. In this paper, the semisolid slurry of AM60 alloy was produced by Self-Inoculation Method (SIM), and the microstructure evolution of primary α-Mg was investigated by water quenching method and metallographic analysis. The results indicate that the semisolid microstructure of AM60 alloy produced by SIM composed of small and globular α-Mg particles, and these grains undergone a coarsing process during quiescent holding. The solid substrate caused by the fusion of solid particles and the dendritic fragments caused by melt flow caused the grain multiplication, and then the grain undergone a steadily growth because of the uniform temperature distribution, resulting in the increase of grains density and a small grain size of the AM60 semisolid slurry.


2021 ◽  
pp. 53-57
Author(s):  
A.L. Vorontsov

Determination of the deformed state of the workpiece at free extrusion of channels is considered. Formulas are obtained for determining the accumulated deformations at a given point of the plastic deformation zone and extruded walls of the product for any punch working stroke. Keywords: die forging, extrusion, misalignment, punch, matrix, plane strain, accumulated deformations, hardening. [email protected]


Sign in / Sign up

Export Citation Format

Share Document