The effect of diapause and cold acclimation on the cold-hardiness of the warehouse beetle, Trogoderma variabile (Coleoptera: Dermestidae)

2014 ◽  
Vol 147 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Ahmed Y. Abdelghany ◽  
Duangsamorn Suthisut ◽  
Paul G. Fields

AbstractThe warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a stored-product pest with scant information on its cold tolerance. Ninety-two per cent of larvae reared in isolation at 30 °C went into diapause in the seventh instar, the remaining 8% emerged as adults in 50 days. Diapausing larvae died after 142 days in the 10th instar. The cold tolerance at 0 °C from highest to lowest was; old larvae>pupae>adult=young larvae>eggs. The LT50 (lethal time for 50% of the population) for grouped (non-diapause) non-acclimated old larvae at 0 °C, −5 °C, −10 °C, −16 °C, and −19 °C were; 20, 11, 5, 1, and 1 day, the LT95 were; 38, 15, 10, 5, and 1 days, respectively. The LT50 for isolated (diapausing), cold-acclimated old larvae at the same temperatures were; 275, 125, 74, 26, and 18 days, and the LT95 were; 500, 160, 100, 45, 20 days, respectively. The supercooling point (SCP) of different stages of non-acclimated insects ranged from −25.3 °C (eggs) to −16.1 °C (young larvae). The most cold hardy stage, isolated and acclimated old larvae, had a SCP of −24.9 °C. The potential of using low temperatures to control T. variabile is discussed.

1995 ◽  
Vol 127 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Paul Fields ◽  
Stéphan Pouleur ◽  
Claude Richard

AbstractCold treatment is used to control the rusty grain beetle (Cryptolestes ferrugineus) (Coleoptera: Cucujidae), the predominant insect pest of stored grain in Canada. However, because it is difficult to cool the grain enough to control C. ferrugineus quickly, we have examined ways to reduce the cold-tolerance of adult C. ferrugineus, the most cold-hardy stage. We compared the efficacy of two ice nucleators, Pseudomonas syringae and Fusarium avenaceum, to decrease cold-tolerance of this insect, as well as their thermal stability. Ice nuclei from the bacteria P. syringae raised C. ferrugineus supercooling point from −17 to −6 °C, and increased mortality at −9°C for 24 h from 11 to 100%. Pseudomonas syringae held at 30°C for 16 weeks showed only a slight decline in its ability to reduce C. ferrugineus cold-tolerance. The fungus F. avenaceum raised the supercooling point of C. ferrugineus from −17 to −9°C, but only increased the mortality at −9°C for 24 h from 10 to 33%. Wheat treated with F. avenaceum and held at 30°C for 4 weeks reduced the cold-hardiness of C. ferrugineus, but had no effect after 8 weeks at 30°C. One reason for the difference between the two nucleators is that P. syringae had approximately 1000 times more ice nuclei per gram than did F. avenaceum. These results suggest that P. syringae is stable enough to reduce C. ferrugineus cold-tolerance after several weeks on warm grain. We discuss possible ways to increase the ice-nucleating activity of F. avenaceum.


2019 ◽  
Vol 113 (2) ◽  
pp. 695-699
Author(s):  
Sunil Shivananjappa ◽  
Robert A Laird ◽  
Kevin D Floate ◽  
Paul G Fields

Abstract Khapra beetle, Trogoderma granarium Everts, is unusual in two key respects. First, they are among the most cold hardy of stored-product insect pests even though they originate in hot and dry regions of the Indian subcontinent. Second, their larvae can enter into diapause to survive harsh environmental conditions. In the present study, we examined whether these two phenomena are related, i.e., due to cross-tolerance. Cross-tolerance is the tolerance to one ecological stress when induced by a separate stress. To investigate this, khapra beetle larvae were reared at different relative humidities (3, 28, 49, and 79%) in either nondiapausing or diapausing conditions. Then the cold tolerance of larvae was estimated by measuring mortality after different durations at −10°C. For nondiapausing larvae, relative humidity had little effect on cold tolerance with the lethal time to 50% mortality (LT50) occurring between 2 and 4 d. For diapausing larvae, cold tolerance increased with greater desiccation stress with LT50’s of 5, 7, 10, and 18 d at 79, 49, 28, and 3% RH, respectively. This suggests that the physiological mechanisms that protect diapausing larvae from desiccation may also increase cold tolerance, even though these insects may rarely be exposed to low temperatures.


1979 ◽  
Vol 57 (9) ◽  
pp. 997-999 ◽  
Author(s):  
R. J. Reader

In laboratory freezing trials, cold hardiness of six types of bog ericad flowers differed significantly (i.e., Chamaedaphne calyculata > Andromeda glaucophylla > Kalmia polifolia > Vaccinium myrtilloides > Ledum groenlandicum > Vaccinium macrocarpon) at air temperatures between −4 and −10 °C but not at temperatures above −2 °C. At the Luther Marsh bog in southern Ontario, low temperatures (−3 to −7 °C) would select against May flowering by the least cold hardy ericads. Availability of pollinators, on the other hand, would encourage May flowering by the most cold hardy species. Presumably, competition for insect pollinators has promoted the diversification of bog ericad flowering peaks, while air temperature, in conjunction with flower cold hardiness, determined the order in which flowering peaks were reached.


1964 ◽  
Vol 96 (4) ◽  
pp. 617-625 ◽  
Author(s):  
A. W. MacPhee

AbstractIn Kings County, Nova Scotia, low temperatures in the coldest nights of winter can differ by as much as 10°F. from one area to another. This has an important bearing on winter survival of some arthropods. Overwintering sites of orchard arthropods range from exposed situations which remain at air temperature to well protected ones on the ground where temperatures rarely go below 20°F. The cold-hardiness of each of 24 species of arthropods was measured: seven were sufficiently cold-hardy to survive any winter conditions in Nova Scotia, five were less cold-hardy but overwinter in well protected sites and twelve had marginal cold-hardiness, their mortality varying with the winter and the locality.


Parasitology ◽  
1999 ◽  
Vol 119 (S1) ◽  
pp. S7-S17 ◽  
Author(s):  
D. A. Wharton

SUMMARYLow temperatures affect the rate of growth, development and metabolism of parasites and when temperatures fall below 0°C may expose the parasite to the potentially lethal risk of freezing. Some parasites have mechanisms, such as diapause, which synchronise their life cycle with favourable seasons and the availability of hosts. Parasites of endothermic hosts are protected from low temperatures by the thermoregulatory abilities of their host. Free-living and off-host stages, however, may be exposed to subzero temperatures and both freezing-tolerant and freeze-avoiding strategies of cold hardiness are found. Parasites of ectothermic hosts may be exposed to subzero temperatures within their hosts. They can rely on the cold tolerance adaptations of their host or they may develop their own mechanisms. Exposure to low temperatures may occur within the carcass of the host and this may be of epidemiological significance if the parasite can be transmitted via the consumption of the carcass.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 379
Author(s):  
Lin Ouyang ◽  
Leen Leus ◽  
Ellen De Keyser ◽  
Marie-Christine Van Labeke

Rose is the most economically important ornamental plant. However, cold stress seriously affects the survival and regrowth of garden roses in northern regions. Cold acclimation was studied using two genotypes (Rosa wichurana and R. hybrida ‘Yesterday’) selected from a rose breeding program. During the winter season (November to April), the cold hardiness of stems, soluble sugar content, and expression of dehydrins and the related key genes in the soluble sugar metabolism were analyzed. ‘Yesterday’ is more cold-hardy and acclimated faster, reaching its maximum cold hardiness in December. R. wichurana is relatively less cold-hardy, only reaching its maximum cold hardiness in January after prolonged exposure to freezing temperatures. Dehydrin transcripts accumulated significantly during November–January in both genotypes. Soluble sugars are highly involved in cold acclimation, with sucrose and oligosaccharides significantly correlated with cold hardiness. Sucrose occupied the highest proportion of total soluble sugars in both genotypes. During November–January, downregulation of RhSUS was found in both genotypes, while upregulation of RhSPS was observed in ‘Yesterday’ and upregulation of RhINV2 was found in R. wichurana. Oligosaccharides accumulated from November to February and decreased to a significantly low level in April. RhRS6 had a significant upregulation in December in R. wichurana. This study provides insight into the cold acclimation mechanism of roses by combining transcription patterns with metabolite quantification.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1142f-1142
Author(s):  
C.L. Haynes ◽  
O. M. Lindstrom ◽  
M. A. Dirr

The effects of timing of pruning in relation to cold hardiness of X Cupressocyparis leylandii (A. B. Jacks. and Dallim.) Dallim. and A. B. Jacks. `Haggerston Grey' and Lagerstroemia L. `Natchez' were evaluated on 6 test dates from August 1989 to March 1990. Pruning treatments decreased the cold hardiness of both taxa compared to unpruned controls on 5 test dates. Cold tolerance of `Haggerston Grey' decreased for 4 to 5 months following the August and October pruning compared to the unpruned controls. `Haggerston Grey's cold tolerance were reduced by 6C in February. October and December pruning of `Natchez' reduced cold hardiness by 4C in January. However, cold hardiness of January and February pruning treatments was similar to unpruned controls. In general, the data indicated that plants of `Haggerston Grey' pruned in October through February were less cold hardy than plants pruned in August. Ideally, `Natchez' crape myrtle should be pruned in late winter.


2021 ◽  
Vol 4 ◽  
Author(s):  
Devin Noordermeer ◽  
Vera Marjorie Elauria Velasco ◽  
Ingo Ensminger

During autumn, evergreen conifers utilize the decrease in daylength and temperature as environmental signals to trigger cold acclimation, a process that involves the downregulation of photosynthesis, upregulation of photoprotection, and development of cold hardiness. Global warming will delay the occurrence of autumn low temperatures while daylength remains unaffected. The impact of autumn warming on cold acclimation and the length of the carbon uptake period of species with ranges that encompass diverse climates, such as Douglas-fir (Pseudotsuga menziesii), remains unclear. Our study investigated intraspecific variation in the effects of autumn warming on photosynthetic activity, photosynthetic pigments, and freezing tolerance in two interior (var. glauca) and two coastal (var. menziesii) Douglas-fir provenances. Following growth under simulated summer conditions with long days (16 h photoperiod) and summer temperatures (22/13°C day/night), Douglas-fir seedlings were acclimated to simulated autumn conditions with short days (8 h photoperiod) and either low temperatures (cool autumn, CA; 4/−4°C day/night) or elevated temperatures (warm autumn, WA; 19/11°C day/night). Exposure to low temperatures in the CA treatment induced the downregulation of photosynthetic carbon assimilation and photosystem II efficiency, increased the size and de-epoxidation of the xanthophyll cycle pigment pool, and caused the development of sustained nonphotochemical quenching (NPQ). Seedlings in the WA treatment exhibited no downregulation of photosynthesis, no change in xanthophyll cycle pigment de-epoxidation, and no development of sustained NPQ. Albeit these changes, freezing tolerance was not impaired under WA conditions compared with CA conditions. Interior Douglas-fir seedlings developed greater freezing tolerance than coastal seedlings. Our findings suggest that autumn warming, i.e., short photoperiod alone, does not induce the downregulation of photosynthesis in Douglas-fir. Although autumn warming delays the downregulation of photosynthesis, the prolonged period of photosynthetic activity does not bear a trade-off of impaired freezing tolerance.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Duk Jun Yu ◽  
Sung Hoon Jun ◽  
Junhyung Park ◽  
Jung Hyun Kwon ◽  
Hee Jae Lee

We analyzed the transcriptomes in the shoots of five-year-old ‘Soomee’ peach trees (Prunus persica) during cold acclimation (CA), from early CA (end of October) to late CA (middle of January), and deacclimation (DA), from late CA to late DA (middle of March), to identify the genes involved in cold hardiness. Cold hardiness of the shoots increased from early to late CA, but decreased from late CA to late DA, as indicated by decreased and increased the median lethal temperature (LT50), respectively. Transcriptome analysis identified 17,208 assembled transcripts during all three stages. In total, 1891 and 3008 transcripts were differentially expressed with a |fold change| > 2 (p < 0.05) between early and late CA, and between late CA and late DA, respectively. Among them, 1522 and 2830, respectively, were functionally annotated with gene ontology (GO) terms having a greater proportion of differentially expressed genes (DEGs) associated with molecular function than biological process or cellular component categories. The biochemical pathways best represented both periods from early to late CA and from late CA to late DA were ‘metabolic pathway’ and ‘biosynthesis of secondary metabolites’. We validated these transcriptomic results by performing reverse transcription quantitative polymerase chain reaction on the selected DEGs showing significant fold changes. The relative expressions of the selected DEGs were closely related to the LT50 values of the peach tree shoots: ‘Soomee’ shoots exhibited higher relative expressions of the selected DEGs than shoots of the less cold-hardy ‘Odoroki’ peach trees. Irrespective of the cultivar, the relative expressions of the DEGs that were up- and then down-regulated during CA, from early to late CA, and DA, from late CA to late DA, were more closely correlated with cold hardiness than those of the DEGs that were down- and then up-regulated. Therefore, our results suggest that the significantly up- and then down-regulated DEGs are associated with cold hardiness in peach tree shoots. These DEGs, including early light-induced protein 1, chloroplastic, 14-kDa proline-rich protein DC2.15, glutamate dehydrogenase 2, and triacylglycerol lipase 2, could be candidate genes to determine cold hardiness.


2020 ◽  
Vol 113 (3) ◽  
pp. 1254-1261
Author(s):  
Jiahe Pei ◽  
Chengcheng Li ◽  
Lili Ren ◽  
Shixiang Zong

Abstract Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) is a woodboring pest that severely damages urban and plain afforestation trees in northern China. Cold hardiness is an important strategy for the insect to survived during low winter temperatures. Understanding the strategy of S. insularis might provide insights for pest management approaches. To assess the key factors affecting cold hardiness, we measured the supercooling point, freezing point, total water content, total fat content, glycogen content, and total protein content of overwintering larvae. The relationships between supercooling points, temperature, body size, and nutrients were analyzed. The results showed that the supercooling point and freezing point of the larvae decreased first, reached the lowest point in January, and then increased during the rest of the overwintering period. The supercooling point positively correlated with the daily average temperature and the daily minimum temperature. Total lipid content negatively correlated with the supercooling point, while glycogen content had a significant positive correlation with the supercooling point. The temperature may have a major impact on cold hardiness, whereas individual body size may have no significant influence over cold tolerance. During the overwintering process, glycogen and total lipid contents may directly affect cold hardiness. Therefore, the lipid and carbohydrate metabolism may play a role in the cold tolerance of S. insularis larvae. This study provides a physiological and biochemical basis for future metabolic studies on S. insularis larva and the research of overwintering strategies.


Sign in / Sign up

Export Citation Format

Share Document