Deep Ocean Mining - Technology Transfer From And To The Offshore Drilling Industry

1977 ◽  
Author(s):  
D.W. Williams ◽  
C.M. McBride ◽  
S.C. Kinnaman
2021 ◽  
Vol 13 (13) ◽  
pp. 7005
Author(s):  
Yu Ning

Draft commercial exploitation regulations have been on the agenda of the ISA since several 15-year exploration contracts expired a few years ago. Given the ineffective implementation in practice and the ignored chapter in several mining regulations on the transfer of mining technology, the future Enterprise and developing countries may take a more positive approach to the transfer of mining technology by striking a delicate balance between the provisions on the protection of intellectual property and those on capacity building under the framework of UNCLOS and the 1994 Agreement, through reciprocal and mutual beneficial means such as direct technology purchasing and investment cooperation. The International Seabed Authority, as the competent inter-governmental organization, has the duty to foster favorable conditions for such transfer.


Author(s):  
Stephan D. A. Hannot ◽  
Jort M. van Wijk

Deep ocean mining systems will have to operate often in harsh weather conditions with heavy sea states. A typical mining system consists of a Mining Support Vessel (MSV) with a Vertical Transport System (VTS) attached to it. The transport system is a pump pipeline system using centrifugal pumps. The heave motions of the ship are transferred to the pump system due to the riser-ship coupling. Ship motions thus will have a significant influence on the internal flow in the VTS. In this paper, the influence of heave motions on the internal flow in the VTS for a typical mining system for Seafloor Massive Sulfide (SMS) deposits in Papua New Guinea is analyzed. Data on the wave climate in the PNG region is used to compute the ship motions of a coupled MSV-VTS. The ship motions then are translated into forces acting on the internal flow in order to compute fluctuations in the internal flow. In this way, the workability of the mining system with respect to the system’s production can be assessed. Based on a detailed analysis of the internal flow in relation to ship motions, the relevance of a coupled analysis for the design of VTS is made clear. This paper provides a method for performing such analyses.


Author(s):  
Kanae Komaki ◽  
Mitsuru Shimazu ◽  
Shunsuke Kondo ◽  
Yosuke Onishi ◽  
Satoshi Furuta ◽  
...  

Deep ocean mining in a hydrothermal area needs careful environmental impact assessments in terms of preservation and mitigation of biodiversity. The General Environmental Technos Co. Ltd., or KANSO TECHNOS, for short, has participated in environmental impact assessments in hydrothermal areas in the Izu-Ogasawara and the East China Sea areas (Ishida et al., 2011). Through the experience, we suggest a method of using acoustic systems such as acoustic Doppler current profilers (ADCPs) for monitoring of suspended matters and benthos in hydrothermal areas. Thus, we try to do in-situ observations, called Tow-yo (or Towing) observations with ADCPs (Komaki and Ura, 2009; Komaki et al., 2010). This system has a great advantage in enabling the measurement of great environmental factors, echo intensity and current velocity in a large range. To confirm exactly what the substances are and how large they are from the measured echo intensity data, we tried laboratory experiments in water tanks with echo sounders and turbidity sensors. These results will finally be integrated in a simulation model to predict substances from in-situ data in deep water for future monitoring systems.


1971 ◽  
Vol 8 (02) ◽  
pp. 145-158
Author(s):  
Raymond Kaufman

The paper discusses the latest techniques proposed for mining minerals from the deep ocean. Deep ocean is defined as the sea beyond the continental shelf, particularly areas of the sea floor exceeding 1200 ft in depth. The three principal deep-ocean minerals having economic potential in the immediate future are identified. Four recently proposed advanced deep-ocean mining concepts are presented. Use of the air-lift pump as a viable mining method is discussed and a large-scale air-lift pump experiment conducted in an abandoned mine shaft at Galax, Virginia is described. The principal features of the conversion of a small C1-M-AV1 type cargo ship to a deep-ocean mining prototype vessel, RV Deepsea Miner, is outlined.


Author(s):  
Yu Dai ◽  
Shaojun Liu ◽  
Li Li ◽  
Yan Li ◽  
Gang Wang ◽  
...  

A typical and may be the most prospective deep ocean mining system is an integration of a mining ship system, a hoist pipeline system and a self-propelled seafloor miner system. According to this representative system configuration, China has designed and developed a deep ocean mining pilot system. In order to evaluate and improve the design of the pilot system, and further to provide technical references for the practical system operation, dynamic simulation models of the subsystems and the total integrated system are developed. For the seafloor miner, a multi-body model with the scale of 1:1 to the actual size of the pilot miner is built, which can be used effectively to perform detailed design, analysis and optimization of the miner system. Meanwhile, to make the integration of the total mining system possible, a simplified 3D single-body model with 6 DOF of the miner is also developed, which is capable of real-time simulation and can be easily integrated with other subsystems. For the pipeline system including the rigid lifting pipe, submerged pump, buffer storage and flexible hose, finite element method (FEM) and discrete element method (DEM) are all proposed and developed. With the FEM model, the towing mining operation process, as well as the launching and retrieval process, can be analyzed. Whereas, the DEM model is preferred to perform the dynamic analysis of the total integrated mining system due to its relative high computation efficiency compared with that of the FEM model. To realize the dynamic analysis of the total integrated mining system with relative high efficiency and accuracy, the single body model of the miner and the DEM model of the pipeline are chosen to be integrated to form the total system and perform dynamic analysis, which in a way can provide specific guidance and suggestions for the practical deep ocean mining system analysis, operation and control. For further researches, more attention will be focused on the analysis of the launching and retrieval operation process of the total mining system, including the water entry of the miner, the launching process of the pipeline system and the final seafloor-touchdown of the miner.


Sign in / Sign up

Export Citation Format

Share Document