Drilling Fluids Project Engineering Guidance and Most Common Fluids Related Challenges for Deepwater and HPHT Offshore Wells

2021 ◽  
Author(s):  
Ahmet Ay ◽  
Huseyin Ali Dogan ◽  
Ahmet Sonmez

Abstract This paper discusses both technical and project management aspects of drilling fluids services for deepwater and high pressure high temperature (HPHT) offshore drilling projects. The technical discussion part includes deepwater and HPHT specific fluids related concerns such as logistics, narrow drilling window, shallow hazards, gas hydrates, HPHT conditions and low temperature rheology; together with practical solutions for each of them. As some of these challenges cannot be met by only fluids itself, technologies such as managed pressure drilling (MPD), dual-gradient drilling (DGD) and use of special downhole tools are also included in the discussions. The project management aspect is covered for both the planning and execution phases. A newly developed Four Stage Planning Guideline (4SPG) with a recommended timetable is proposed for high-profile offshore drilling projects. Starting from fluids selection to preparation of the contingency plans is discussed in detail for the planning phase. Execution phase is discussed mainly for service company representatives on how to follow main or contingency plans effectively and ensure good communication is achieved with all parties involved. Work model presented in this paper can be used as a complete guideline by operating and service company representatives in order to increase the success rate of these high-risk offshore drilling projects and ensure learnings are captured in a structured way for continuous improvement.

Author(s):  
Umar A. Altahtooh ◽  
Margaret W. Emsley

Almost all project management software has lack of displaying the outcomes of projects as a feature. This is because there is no recognized way of calculating the actual project duration compared to the authorized project duration. Data were collected through a mixed method using a Critical Incident Technique (CIT) and a survey. The study finds that time error can occur throughout the project execution phase. Findings suggest that challenged projects could be successful or failed projects using a model of IT Project Outcomes Testing (MITPOT). Thus, this model establishes a foundation of Project End Theory (PET).


2021 ◽  
pp. 1-19
Author(s):  
Ashraf Ahmed ◽  
Salem Basfer ◽  
Salaheldin Elkatatny

Abstract The solids sagging in high-pressure high-temperature (HP/HT) reservoirs is a common challenge associated with hematite drilling fluids. This study provides a solution to hematite sagging in invert emulsion mud for HP/HT wells which involves the combination of Micromax (Mn3O4) with hematite. The particles of both weighting agents were characterized to address their mineralogical features. A Field formulation of the mud was used over a range of Micromax/hematite ratios (0/100, 20/80, and 30/70%) in laboratory experiments to address the sag performance and determine the optimal combination ratio. Then, density, emulsion stability, rheology, viscoelasticity, and filtration performance for the formulated mud were addressed. The tests were conditioned to 500 psi and 350 °F. The acquired results of sag tests indicated that incorporation of 30% Micromax solved the hematite sagging issue and brought the sag tendency within the recommended safe range. An insignificant reduction in mud density was observed upon the inclusion of Micromax, while the emulsion stability was obviously improved from 551 to 614 volts with the 30% Micromax mixture. The recommended 30/70% combination had almost no effect on plastic viscosity and yield point since they were increased by one unit, but the gel strength was improved resulting in flat rheology and better solids suspension capacity. The filtration behavior of the formulation with 30% Micromax was enhanced compared to pure hematite as it resulted in 10 and 14% reduction of the filtrate volume and filter-cake thickness, respectively. This study contributes to improve and economize the drilling cost and time by formulating a stabilized and distinguished-performance drilling mud using combined weighting agents at HP/HT.


2002 ◽  
Vol 124 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Neeraj S. Nandurdikar ◽  
Nicholas E. Takach ◽  
Stefan Z. Miska

Blast furnace slag (BFS) is a latent hydraulic material similar in composition to Portland cement. BFS was originally studied for mud to cement (MTC) purposes. This application called for large quantities of BFS (40–500 ppb (lb/bbl)) and ultimately proved to be ineffective. Subsequently, BFS has been investigated as an additive in drilling fluids. In a recent study, muds containing additive-level concentrations (5–30 lb/bbl) of BFS were shown to be effective in reducing formation damage. The present work extends the investigation of BFS as a drilling fluid additive. Specifically, we have explored the use of chemical reagents to activate the BFS in filter cakes to achieve cakes that are thin, impervious and firm. Filter cakes were formed from slag-laden drilling fluids in a high-pressure, high-temperature reverse filtration apparatus (permeability plugging apparatus). Studies were conducted with partially hydrolyzed polyacrlyamide (PHPA) muds and CaCO3-based fluids containing different loadings of BFS. Filter cakes of these fluids were treated with several different activators and the results were compared to cakes containing no BFS. Different activation techniques were investigated and a novel device was designed to measure the strength of the filter cakes. An environmental scanning electron microscope examined the relationship between the structural features of the activated cakes and their strengths. This study demonstrates that filter cakes containing BFS can be chemically activated to produce thin, firm cakes with improved filtration properties. These cakes should be able to form better bonds with cement subsequently used for completion.


2004 ◽  
Author(s):  
A. Audibert ◽  
C. Dalmazzone ◽  
D. Dalmazzone ◽  
C. Dewattines

SPE Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Sidharth Gautam ◽  
Chandan Guria ◽  
Laldeep Gope

Summary Determining the rheology of drilling fluid under subsurface conditions—that is, pressure > 103.4 MPa (15,000 psi) and temperature > 450 K (350°F)—is very important for safe and trouble-free drilling operations of high-pressure/high-temperature (HP/HT) wells. As the severity of HP/HT wells increases, it is challenging to measure downhole rheology accurately. In the absence of rheology measurement tools under HP/HT conditions, it is essential to develop an accurate rheological model under extreme conditions. In this study, temperature- and pressure-dependence rheology of drilling fluids [i.e., shear viscosity, apparent viscosity (AV), and plastic viscosity (PV)] are predicted at HP/HT conditions using the fundamental momentum transport mechanism (i.e., kinetic theory) of liquids. Drilling fluid properties (e.g., density, thermal decomposition temperature, and isothermal compressibility), and Fann® 35 Viscometer (Fann Instrument Corporation, Houston, USA) readings at surface conditions, are the only input parameters for the proposed HP/HT shear viscosity model. The proposed model has been tested using 26 different types of HP/HT drilling fluids, including water, formate, oil, and synthetic oil as base fluids. The detailed error and the sensitivity analysis have been performed to demonstrate the accuracy of the proposed model and yield comparative results. The proposed model is quite simple and may be applied to accurately predict the rheology of numerous drilling fluids. In the absence of subsurface rheology under HP/HT conditions, the proposed viscosity model may be used as a reliable soft-sensor tool for the online monitoring and control of rheology under downhole conditions while drilling HP/HT wells.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
K. David Lyons ◽  
Simone Honeygan ◽  
Thomas Mroz

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Oscar Contreras ◽  
Mortadha Alsaba ◽  
Geir Hareland ◽  
Maen Husein ◽  
Runar Nygaard

This paper presents a comprehensive experimental evaluation to investigate the effects of adding iron-based and calcium-based nanoparticles (NPs) to nonaqueous drilling fluids (NAFs) as a fluid loss additive and for wellbore strengthening applications in permeable formations. API standard high-pressure-high-temperature (HPHT) filter press in conjunction with ceramic disks is used to quantify fluid loss reduction. Hydraulic fracturing experiments are carried out to measure fracturing and re-opening pressures. A significant enhancement in both filtration and strengthening was achieved by means of in situ prepared NPs. Our results demonstrate that filtration reduction is essential for successful wellbore strengthening; however, excessive reduction could affect the strengthening negatively.


2014 ◽  
Vol 508 ◽  
pp. 125-128
Author(s):  
Jian Fang ◽  
Qing Hua Yu ◽  
Lu Xu

CNOOC laid offshore oil and natural gas pipelines for offshore drilling platforms. The engineering included laying the pipelines from offshore drilling platform to landing zone, laying the pipelines between two platforms, and installing vertical pipes for platforms. Aiming at the characteristics in the diving project management, this paper analyzes and evaluates the difficulties and risks of underwater work, puts forward the corresponding safety managements. These measures ensure the underwater operations safely and smoothly. The engineering lasts 195 days, uses 160 diving equipments, and dives 282 person-times. The total diving time is 17900 minutes, and the maximum diving depth is 70 meters.


Sign in / Sign up

Export Citation Format

Share Document