Value Creation and Cost Management by Use of the New ISO 15663 Life Cycle Costing Standard

2021 ◽  
Author(s):  
Endre Willmann ◽  
Runar Østebø ◽  
Eduardo H. R. Montalvao

Abstract The new edition of the ISO 15663 standard has been developed during the recent years and will strengthen the industry cost management for business value creation. This paper shows how such standardization can be used to further enhance and promote adoption of a common and consistent approach to life cycle costing in the offshore oil and gas industry. The new ISO 15663 edition maintains key principles from previous editions, but does also introduce an improved and revised management methodology for application of life cycle costing. The purpose is to provide decision support for selecting between alternative options (e.g., projects, operational and technical subject matters) across life cycle phases, also aligned with overall corporate business objectives such as HSE and sustainability. It also provides the means of identifying cost drivers and a framework for value optimization over the entire life of an asset. The international standard is providing an essential set of normative requirements on how to implement and apply the life cycle costing methodology and the decision criteria, supported by an exhaustive part of recommended practices. This includes the identification of common and specific contractual considerations for operators, contractors and vendors (e.g., complementary metrics besides expenditure, such as systems availability guarantee and risk-sharing clauses). It also includes the application in the life cycle phases of an asset, the techniques and data input, examples of application, and assessment and lessons learnt. Capital expenditure (CAPEX), operating expenditure (OPEX), revenue and lost revenue (LOSTREV) factors are addressed. The standard includes an unambiguous definition of the economic objectives of a project and application of the same business criteria when making major engineering decisions. The life cycle costing methodology is applicable to all asset decisions in any life cycle phase, but should be applied only when expected to add value for decision-support. The required extent of planning and management of the appropriate life cycle costing is depending on the magnitude of the costs involved, the potential value that can be created and the life cycle phase. This paper demonstrates how the new ISO 15663 can be utilized by providing new examples of life cycle costing, to give all participants in the process — oil and gas operators, contractors and vendors — an up-to-date and streamlined set of requirements and guidance, encouraging a fit for purpose application. The paper does also present unique key economic evaluation measures such as life cycle cost (LCC) and net present value (NPV).

Author(s):  
Wai M. Cheung ◽  
Linda B. Newnes ◽  
Antony R. Mileham ◽  
Robert Marsh ◽  
John D. Lanham

This paper presents a review of research in the area of life cycle costing and offers a critique of current commercial cost estimation systems. The focus of the review is on relevant academic research on life cycle cost from 2000 onwards. In addition to this a comparison of the current cost estimation systems is presented. Using the review findings and industrial investigations as a base, a set of mathematical representations for design and manufacturing costs and the introduction of the critical factors is proposed. These are considered in terms of the operational, maintenance and disposal costs to create a method for ascertaining the life cycle cost estimate for complex products. This is presented using as an exemplar, research currently being undertaken in the area of low volume and long life electronic products in the UK defence sector. The benefit of the method proposed is that it aims to avoid the inflexibility of traditional approaches which usually require historical and legacy data to support the cost estimation processes.


2020 ◽  
Vol 12 (16) ◽  
pp. 6584
Author(s):  
Jingjing Jia ◽  
Shujie Ma ◽  
Yixi Xue ◽  
Deyang Kong

Electric carsharing (ECS) is a potential option to address the problem of unsustainability in the transportation sector. The business-to-consumer model of ECS, which is one of several different electric carsharing models, has gained much popularity in recent years. Generating sufficient revenue to cover costs is a critical factor for ECS companies to maintain healthy development. This study makes an economic analysis, on the basis of life-cycle cost and monetary revenue associated with the operation of ECS, of two Chinese ECS companies: EVCARD and LCCS. Based on data gathered by field investigation, this study aims to determine the break-even moment for each company’s main vehicle models by means of the net present value method. The results show that EVCARD achieved an earlier break-even moment than LCCS. The break-even moment of Chery eQ of EVCARD was the shortest of all the vehicle models, at only 181.3 min. Moreover, a sensitivity analysis was conducted to portray how different cost-related and revenue-related factors influence the break-even moment. Our findings indicate that a wide difference exists in terms of the influence of different factors on the break-even moment. Among these, the manufacturer’s suggested retail price is the most influential variable, followed by the unit rental price. The reaction of the break-even moment to the market price of a charging pile and the non-rental revenue per vehicle—especially the latter—was found to be negligible in the sensitivity analysis.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Bailian Chen ◽  
Jianchun Xu

In oil and gas industry, production optimization is a viable technique to maximize the recovery or the net present value (NPV). Robust optimization is one type of production optimization techniques where the geological uncertainty of reservoir is considered. When well operating conditions, e.g., well flow rates settings of inflow control valves and bottom-hole pressures, are the optimization variables, ensemble-based optimization (EnOpt) is the most popular ensemble-based algorithm for the robust life-cycle production optimization. Recently, a superior algorithm, stochastic simplex approximate gradient (StoSAG), was proposed. Fonseca and co-workers (2016, A Stochastic Simplex Approximate Gradient (StoSAG) for Optimization Under Uncertainty, Int. J. Numer. Methods Eng., 109(13), pp. 1756–1776) provided a theoretical argument on the superiority of StoSAG over EnOpt. However, it has not drawn significant attention in the reservoir optimization community. The purpose of this study is to provide a refined theoretical discussion on why StoSAG is generally superior to EnOpt and to provide a reasonable example (Brugge field) where StoSAG generates estimates of optimal well operating conditions that give a life-cycle NPV significantly higher than the NPV obtained from EnOpt.


2012 ◽  
Author(s):  
Jin How Ho ◽  
Azlan Abd. Rahman

Artikel ini membincangkan kajian ringkas berkaitan analisis kos kitaran hayat terhadap langkah-langkah pembaikan pengaratan bagi jambatan dan struktur marin konkrit yang terdedah kepada karbonasi atau serangan natrium klorida daripada air laut atau sumber-sumber lain. Perisian kos kitaran hayat, Bridge LCC 2.0 digunakan untuk menjalankan analisi kitaran hayat untuk tiga kes kajian melibatkan kaedah nilai bersih kini. Keputusan kajian menunjukkan analisis kos kitaran hayat berkeupayaan untuk membantu jurutera dan agensi pengangkutan dalam menilai keputusan penyelenggaraan yang efektif berkaitan dengan masalah pengaratan. Ia boleh digunakan sebagai alat analisis ekonomi kejuruteraan yang membantu mantaksir kos-kos perbezaan dan membuat pilihan terhadap langkah pembaikan pengaratan yang berkesan. Analisis kos kitaran hayat bagi langkah pembaikan dipengaruhi oleh banyak pemboleh ubah seperti kos permulaan, kos penyelenggaraan, tahun kekerapan, dan jangka masa analisis. Amalan terbaik untuk analisis kos kitaran hayat bukan sahaja mengambil kira perbelanjaan oleh agensi, tetapi perlu mempertimbangkan kos-kos oleh pengguna dan analisis sensitiviti di sepanjang jangka hayat sesuatu langkah pembaikan. Kata kunci: Analisis kos kitaran hayat, jambatan konkrit, pengaratan, langkah, pembaikan, pemulihan struktur, keberkesanan kos, kaedah nilai bersih kini (NPV) This paper discusses a short study on life cycle cost analysis (LCCA) on corrosion remedial measures for concrete bridges and marine structures, which are subjected to carbonation or ingress of sodium chloride from sea water and other sources. Life cycle costing software, Bridge LCC 2.0, was used to perform life cycle cost analyses on three case studies, based on net present value method. The analysis of the results showed that LCCA is capable of assisting engineers or transportation agencies to evaluate optimum maintenance decisions in corrosion–related problems. It can be used as an engineering economic analysis tool that helps in qualifying the differential costs and choosing the most cost–effective corrosion remedial measures. Life cycle costs for the remedial measures are influenced by many costing variables such as initial costs, periodic maintenance costs, frequency years and analysis period. The best practice of LCCA should not only consider agency expenditures but also user costs and sensitivity analysis throughout the service life of a remedial measure. Key words: Life cycle analysis, concrete bridges, corrosion, remedial measures, structural rehabilitation, cost-effective, net present value method (NPV)


Sign in / Sign up

Export Citation Format

Share Document