A Machine Learning Workflow to Predict Anomalous Sanding Events in Deepwater Wells

2021 ◽  
Author(s):  
Mustafa Can Kara ◽  
Malina Majeran ◽  
Bret Peterson ◽  
Tom Wimberly ◽  
Greg Sinclair

Abstract Deepwater wells possess a high risk of sand escaping the reservoir into the production systems. Sand production is a common operational issue which results in potential equipment damage and hence product contamination. Excessive sand erosion causes blockage in tubulars and cavities in downhole equipment (subsea valves, chokes, bends etc.), resulting in maintenance costs for subsea equipment that adds up to millions of dollars yearly to operators. In this work, a scalable Machine Learning (ML) model readily accessing historical and real-time feed of sensor and simulation data is built to develop a predictive solution. Deployed workflow can inform Control Room Operators before significant damage occurs. An anomaly detection architecture, a common unsupervised learning framework for maintenance analytics, is deployed. Anomaly detection models include methods within the scope of dimensionality reduction. Principle Component Analysis (PCA) and Long Short-Term Memory (LSTM) Autoencoders are deployed to tackle the problem through reconstruction of the original input. During the workflow, a threshold is calculated after batch training and passed along with anomaly error scores in real-time. An alarm is triggered once the real-time anomaly score passes the threshold calculated during batch training. ML outputs are streamlined in near real-time to the database. In this study, deployed ML model performance is benchmarked against a GOM Deepwater well where sanding is known to occur often. The ML Model architecture can process data that is captured by OSI PI historian, predict anomalous sanding events in advance, and is shown to be scalable to other wells in GOM. It is noted from this study that streamlined ML architecture and outputs simplify exploratory data analysis and model deployment across Onshore and Offshore Business Units. In addition, sanding stakeholders are notified in advance and can take early mitigative action before significant damage to wellhead or downhole equipment occurs instead of reacting to a possible sanding event offshore. The novelty of the utilized ML algorithm and process is in the ability to predict sanding anomalies in advance through ML batch training, infer prediction values near real-time, and scale to other assets.

2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Li ◽  
Desheng Wu

PurposeThe infraction of securities regulations (ISRs) of listed firms in their day-to-day operations and management has become one of common problems. This paper proposed several machine learning approaches to forecast the risk at infractions of listed corporates to solve financial problems that are not effective and precise in supervision.Design/methodology/approachThe overall proposed research framework designed for forecasting the infractions (ISRs) include data collection and cleaning, feature engineering, data split, prediction approach application and model performance evaluation. We select Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machines, Artificial Neural Network and Long Short-Term Memory Networks (LSTMs) as ISRs prediction models.FindingsThe research results show that prediction performance of proposed models with the prior infractions provides a significant improvement of the ISRs than those without prior, especially for large sample set. The results also indicate when judging whether a company has infractions, we should pay attention to novel artificial intelligence methods, previous infractions of the company, and large data sets.Originality/valueThe findings could be utilized to address the problems of identifying listed corporates' ISRs at hand to a certain degree. Overall, results elucidate the value of the prior infraction of securities regulations (ISRs). This shows the importance of including more data sources when constructing distress models and not only focus on building increasingly more complex models on the same data. This is also beneficial to the regulatory authorities.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1242
Author(s):  
Sihao Zhang ◽  
Jingyang Liu ◽  
Guigen Zeng ◽  
Chunhui Zhang ◽  
Xingyu Zhou ◽  
...  

In most of the realistic measurement device-independent quantum key distribution (MDI-QKD) systems, efficient, real-time feedback controls are required to maintain system stability when facing disturbance from either external environment or imperfect internal components. Traditionally, people either use a “scanning-and-transmitting” program or insert an extra device to make a phase reference frame calibration for a stable high-visibility interference, resulting in higher system complexity and lower transmission efficiency. In this work, we build a machine learning-assisted MDI-QKD system, where a machine learning model—the long short-term memory (LSTM) network—is for the first time to apply onto the MDI-QKD system for reference frame calibrations. In this machine learning-assisted MDI-QKD system, one can predict out the phase drift between the two users in advance, and actively perform real-time phase compensations, dramatically increasing the key transmission efficiency. Furthermore, we carry out corresponding experimental demonstration over 100 km and 250 km commercial standard single-mode fibers, verifying the effectiveness of the approach.


2021 ◽  
Vol 11 (21) ◽  
pp. 10187
Author(s):  
Yonghyeok Ji ◽  
Seongyong Jeong ◽  
Yeongjin Cho ◽  
Howon Seo ◽  
Jaesung Bang ◽  
...  

Transmission mounted electric drive type hybrid electric vehicles (HEVs) engage/disengage an engine clutch when EV↔HEV mode transitions occur. If this engine clutch is not adequately engaged or disengaged, driving power is not transmitted correctly. Therefore, it is required to verify whether engine clutch engagement/disengagement operates normally in the vehicle development process. This paper studied machine learning-based methods for detecting anomalies in the engine clutch engagement/disengagement process. We trained the various models based on multi-layer perceptron (MLP), long short-term memory (LSTM), convolutional neural network (CNN), and one-class support vector machine (one-class SVM) with the actual vehicle test data and compared their results. The test results showed the one-class SVM-based models have the highest anomaly detection performance. Additionally, we found that configuring the training architecture to determine normal/anomaly by data instance and conducting one-class classification is proper for detecting anomalies in the target data.


This research discloses how to utilize machine learning methods for anomaly detection in real-time on a computer network. While utilizing machine learning for this task is definitely not a novel idea, little literature is about the matter of doing it in real-time. Most machine learning research in PC network anomaly detection depends on the KDD '99 data set and means to demonstrate the proficiency of the algorithms introduced. The emphasis on this data set has caused a lack of scientific papers disclosing how to assemble network data, remove features, and train algorithms for use inreal-time networks. It has been contended that utilizing the KDD '99 dataset for anomaly detection is not appropriate for real-time network systems. This research proposes how the data gathering procedure will be possible utilizing a dummy network and generating synthetic network traffic by analyzing the importance of One-class SVM. As the efficiency of k-means clustering and LTSM neural networks is lower than one-class SVM, that is why this research uses the results of existing research of LSTM and k-means clustering for the comparison with reported outcomes of a similar algorithm on the KDD '99 dataset. Precisely, without engaging KDD ’99 data set by using synthetic network traffic, this research achieved the higher accuracy as compared to the previous researches.


Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 38
Author(s):  
David Novoa-Paradela ◽  
Óscar Fontenla-Romero ◽  
Bertha Guijarro-Berdiñas

Anomaly detection is a sub-area of machine learning that deals with the development of methods to distinguish among normal and anomalous data. Due to the frequent use of anomaly-detection systems in monitoring and the lack of methods capable of learning in real time, this research presents a new method that provides such online adaptability. The method bases its operation on the properties of scaled convex hulls. It begins building a convex hull, using a minimum set of data, that is adapted and subdivided along time to accurately fit the boundary of the normal class data. The model has online learning ability and its execution can be carried out in a distributed and parallel way, all of them interesting advantages when dealing with big datasets. The method has been compared to other state-of-the-art algorithms demonstrating its effectiveness.


2021 ◽  
Author(s):  
Kingsley Amadi ◽  
Ibiye Iyalla ◽  
Radhakrishna Prabhu

Abstract This paper presents the development of predictive optimization models for autonomous rotary drilling systems where emphasis is placed on the shift from human (manual) operation as the driving force for drill rate performance to Quantitative Real-time Prediction (QRP) using machine learning. The methodology employed in this work uses real-time offset drilling data with machine learning models to accurately predict Rate of Penetration (ROP) and determine optimum operating parameters for improved drilling performance. Two optimization models (physics-based and energy conservation) were tested using Artificial Neutral Network (ANN) algorithm. Results of analysis using the model performance assessment criteria; correlation coefficient (R2) and Root Mean Square Error (RMSE), show that drill rate is non-linear in nature and the machine learning model (ANN) using energy conservation is most accurate for predicting ROP due to its ability in establishing a functional feature vector based on learning from past events.


Sign in / Sign up

Export Citation Format

Share Document