Autonomous Inflow Control Valve Multiphase Flow Performance for Light Oil

2021 ◽  
Author(s):  
Soheila Taghavi ◽  
Einar Gisholt ◽  
Haavard Aakre ◽  
Stian Håland ◽  
Kåre Langaas

Abstract Early water and/or gas breakthrough is one of the main challenges in oil production which results in inefficient oil recovery. Existing mature wells must stop the production and shut down due to high gas oil ratio (GOR) and/or water cut (WC) although considerable amounts of oil still present along the reservoir. It is important to develop technologies that can increase oil production and recovery for marginal, mature, and challenging oil reservoirs. In most fields the drainage mechanism is pressure support from gas and/or water and the multiphase flow performance is particularly important. Autonomous Inflow Control Valve (AICV) can delay the onset of breakthrough by balancing the inflow along the horizontal section and control or shut off completely the unwanted fluid production when the breakthrough occurs. The AICV was tested in a world-leading full-scale multiphase flow loop located in Porsgrunn, Norway. Tests were performed with realistic reservoir conditions, i.e. reservoir pressure and temperature, crude oil, formation water and hydrocarbon gas at various gas oil ratio and water cut in addition to single phase performances. A summary of the flow loop, test conditions, the operating procedures, and test results are presented. In addition, how to represent the well with AICVs in a standard reservoir simulation model are discussed. The AICV flow performance curves for both single phase and multiphase flow are presented, discussed, and compared to conventional Inflow Control Device (ICD) performance. The test results demonstrate that the AICV flow performance is significantly better than conventional ICD. The AICV impact on a simplified model of a thin oil rim reservoir is shown and modelling limitations are discussed. The simulation results along with the experimental results demonstrated considerable benefit of deploying AICV in this thin oil rim reservoir. Furthermore, this paper describes a novel approach towards the application of testing the AICV for use within light oil completion designs and how the AICV flow performance results can be utilized in marginal, mature, and other challenging oil reservoirs.

2021 ◽  
Author(s):  
Soheila Taghavi ◽  
Ismarullizam Mohd Ismail ◽  
Haavard Aakre ◽  
Vidar Mathiesen

Abstract To increase the production and recovery of marginal, mature, and challenging oil reservoirs, developing new inflow control technologies is of great importance. In cases where production of surrounding reservoir fluids such as gas and water can cause negative effects on both the total oil recovery and the amounts of energy required to drain the reservoir, the multiphase flow performances of these technologies are of particular significance. In typical cases, a Long Horizontal Well (LHW) will eventually start producing increasing amounts of these fluids. This will cause the Water Cut (WC) and/or Gas Oil Ratio (GOR) to rise, ultimately forcing the well to be shut down even though there still are considerable amounts of oil left in the reservoir. In earlier cases, Inflow Control Devices (ICD) and Autonomous Inflow Control Devices (AICD) have proven to limit these challenges and increase the total recovery by balancing the influx along the well and delaying the breakthrough of gas and/or water. The Autonomous Inflow Control Valve (AICV) builds on these same principles, and in addition has the ability to autonomously close when breakthrough of unwanted gas and/or water occurs. This will even out the total drawdown in the well, allowing it to continue producing without the WC and/or GOR reaching inacceptable limits. As part of the qualification program of the light-oil AICV, extensive flow performance tests have been carried out in a multiphase flow loop test rig. The tests have been performed under realistic reservoir conditions with respect to variables such as pressure and temperature, with model oil, water, and gas at different WC's and GOR's. Conducting these multiphase experiments has been valuable in the process of establishing the AICV's multiphase flow behavior, and the results are presented and discussed in this paper. Single phase performance and a comparison with a conventional ICD are also presented. The results display that the AICV shows significantly better performance than the ICD, both for single and multiphase flow. A static reservoir modelling method have been used to evaluate the AICV performance in a light-oil reservoir. When compared to a screen-only completion and an ICD completion, the simulation shows that a completion with AICV's will outperform the above-mentioned completions with respect to WC and GOR behavior. A discussion on how this novel AICV can be utilized in marginal, mature, and other challenging reservoirs will be provided in the paper.


2021 ◽  
Author(s):  
Mathias Lia Carlsen ◽  
Braden Bowie ◽  
Mohamad Majzoub Dahouk ◽  
Stian Mydland ◽  
Curtis Hays Whitson ◽  
...  

Abstract We extend the numerically-assisted RTA workflow proposed by Bowie and Ewert (2020) to (a) all fluid systems and (b) finite conductivity fractures. The simple, fully-penetrating planar fracture model proposed is a useful numerical symmetry element model that provides the basis for the work presented in this paper. Results are given for simulated and field data. The linear flow parameter (LFP) is modified to include porosity (LFPꞌ=LFP√φ). The original (surface) oil in place (OOIP) is generalized to represent both reservoir oil and reservoir gas condensate systems, using a consistent initial total formation volume factor definition (Bti) representing the ratio of a reservoir HCPV containing surface oil in a reservoir oil phase, a reservoir gas phase, or both phases. With known (a) well geometry, (b) fluid initialization (PVT and water saturation), (c) relative permeability relations, and (d) bottomhole pressure (BHP) time variation (above and below saturation pressure), three fundamental relationships exist in terms of LFPꞌ and OOIP. Numerical reservoir simulation is used to define these relationships, providing the foundation for numerical RTA, namely that wells: (1) with the same value of LFPꞌ, the gas, oil and water surface rates will be identical during infinite-acting (IA) behavior; (2) with the same ratio LFPꞌ/OOIP, producing GOR and water cut behavior will be identical for all times, IA and boundary dominated (BD); and (3) with the same values of LFPꞌ and OOIP, rate performance of gas, oil, and water be identical for all times, IA and BD. These observations lead to an efficient, semi-automated process to perform rigorous RTA, assisted by a symmetry element numerical model. The numerical RTA workflow proposed by Bowie and Ewert solves the inherent problems associated with complex superposition and multiphase flow effects involving time and spatial changes in pressure, compositions and PVT properties, saturations, and complex phase mobilities. The numerical RTA workflow decouples multiphase flow data (PVT, initial saturations and relative permeabilities) from well geometry and petrophysical properties (L, xf, h, nf, φ, k), providing a rigorous yet efficient and semi-automated approach to define production performance for many wells. Contributions include a technical framework to perform numerical RTA for unconventional wells, irrespective of fluid type. A suite of key diagnostic plots associated with the workflow is provided, with synthetic and field examples used to illustrate the application of numerical simulation to perform rigorous RTA. Semi-analytical models, time, and spatial superposition (convolution), pseudopressure and pseudotime transforms are not required.


2021 ◽  
Author(s):  
Tejas Kalyani ◽  
Haavard Aakre ◽  
Vidar Mathiesen

Abstract Many wells across the globe have been installed with Inflow Control Device (ICD) technology to balance the production across the production interval, addressing some of the challenges associated with horizontal and deviated wells. Nevertheless, ICDs have limitations with restricting unwanted fluids upon breakthrough. Autonomous Inflow Control Valve (AICV) technology functions similar to an ICD initially (i.e., balancing flux across the length of horizontal wells, effectively delaying breakthrough) but provides the additional benefit of shutting off the flow of unwanted fluids upon breakthrough. This paper will present comprehensive AICV completion design workflow along with multiple case histories highlighting the reservoir management benefits of the AICV technology in mitigating un-wanted inflow of water and gas and delivering improved oil production and recovery. Like other AICDs (Autonomous Inflow Control Device), AICV can differentiate the fluid flowing through it via fluid properties such as viscosity and density at reservoir conditions. However, AICV's performance is much more effective due to its advanced design which provides further benefits using both Hagen-Poiseuille's and Bernoulli's principles. AICV technology is based on the difference in the pressure drop in a laminar flow element (LFE) compared to a turbulent flow element (TFE) and has a capability to shut-off the main flow autonomously when an unwanted fluid such as water or gas breakthrough occurs. Thus, reduces well water cut (WC) and/or gas-oil ratio (GOR) significantly. Rigorous single-phase and multiphase flow-loop tests have been conducted covering a wide range of fluid properties to characterize the AICVs flow performance. Extensive plugging testing and accelerated erosion tests have also been conducted. This paper presents some of these flow performance analysis and testing results. Furthermore, the paper will also discuss in detail a reservoir-centric AICV completion modelling and design workflow. Finally, this papers also discuss in detail AICV well performance installed in a light oil as well as in heavy oil reservoirs and how operators achieved higher OPEX saving as well as higher ultimate recovery (UR) from the wells due to prolonged as well as significant reduction in water cut and/or lower GOR. The AICV design methodology and performance evaluation analysis is presented through several case studies. The analysis takes into account the whole cycle: from flow loop testing to characterization, reservoir modelling, optimized AICV completion design and post-installation well performance to evaluate the AICV technology benefits.


2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


2003 ◽  
Vol 40 (3-4) ◽  
pp. 177-188 ◽  
Author(s):  
Abdel-Mohsen O. Mohamed ◽  
Maisa El Gamal ◽  
Abdulrazag Y. Zekri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document