scholarly journals Molecular epidemiology of Enterococcus faecalis isolated from patients with urinary tract infection

Author(s):  
Ayano ISHII
Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Zohreh Ghalavand ◽  
Masoud Alebouyeh ◽  
Kiandokht Ghanati ◽  
Leila Azimi ◽  
Marjan Rashidan

Abstract Background Community-acquired urinary tract infection (CA-UTI) could be caused by endogenous or exogenous routes. To show this relationship, we investigated molecular fingerprints and genotypes of paired Enterococcus faecalis isolated from the urine of symptomatic patients and their fecal samples. Results Out of the studied patients, 63 pairs of E. faecalis isolates were obtained simultaneously from their urine and feces samples. All the strains were sensitive to vancomycin, linezolid, nitrofurantoin, and daptomycin (MIC value: ≤ 4 µg/ml), while resistance to tetracycline (urine: 88.9%; stool: 76.2%) and minocycline (urine: 87.3%, stool: 71.4%) was detected in most of them. The most common detected virulence genes were included efbA, ace, and gelE. RAPD-PCR and PFGE analyses showed the same patterns of molecular fingerprints between paired of the isolates in 26.9% and 15.8% of the patients, respectively. Conclusions Similarity of E. faecalis strains between the urine and feces samples confirmed the occurrence of endogenous infection via contamination with colonized bacteria in the intestinal tract. Carriage of a complete virulence genotype in the responsible strains was statistically in correlation with endogenous UTI, which shows their possible involvement in pathogenicity of uropathogenic E. faecalis strains.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
C. Colomer-Winter ◽  
A. L. Flores-Mireles ◽  
S. Kundra ◽  
S. J. Hultgren ◽  
J. A. Lemos

ABSTRACT In Firmicutes, the nutrient-sensing regulators (p)ppGpp, the effector molecule of the stringent response, and CodY work in tandem to maintain bacterial fitness during infection. Here, we tested (p)ppGpp and codY mutant strains of Enterococcus faecalis in a catheter-associated urinary tract infection (CAUTI) mouse model and used global transcriptional analysis to investigate the relationship of (p)ppGpp and CodY. The absence of (p)ppGpp or single inactivation of codY led to lower bacterial loads in catheterized bladders and diminished biofilm formation on fibrinogen-coated surfaces under in vitro and in vivo conditions. Single inactivation of the bifunctional (p)ppGpp synthetase/hydrolase rel did not affect virulence, supporting previous evidence that the association of (p)ppGpp with enterococcal virulence is not dependent on the activation of the stringent response. Inactivation of codY in the (p)ppGpp0 strain restored E. faecalis virulence in the CAUTI model as well as the ability to form biofilms in vitro. Transcriptome analysis revealed that inactivation of codY restores, for the most part, the dysregulated metabolism of (p)ppGpp0 cells. While a clear linkage between (p)ppGpp and CodY with expression of virulence factors could not be established, targeted transcriptional analysis indicates that a possible association between (p)ppGpp and c-di-AMP signaling pathways in response to the conditions found in the bladder may play a role in enterococcal CAUTI. Collectively, data from this study identify the (p)ppGpp-CodY network as an important contributor to enterococcal virulence in catheterized mouse bladder and support that basal (p)ppGpp pools and CodY promote virulence through maintenance of a balanced metabolism under adverse conditions. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs) are one of the most frequent types of infection found in the hospital setting that can develop into serious and potentially fatal bloodstream infections. One of the infectious agents that frequently causes complicated CAUTI is the bacterium Enterococcus faecalis, a leading cause of hospital-acquired infections that are often difficult to treat due to the exceptional multidrug resistance of some isolates. Understanding the mechanisms by which E. faecalis causes CAUTI will aid in the discovery of new druggable targets to treat these infections. In this study, we report the importance of two nutrient-sensing bacterial regulators, named (p)ppGpp and CodY, for the ability of E. faecalis to infect the catheterized bladder of mice.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e107827 ◽  
Author(s):  
Dominique Wobser ◽  
Liaqat Ali ◽  
Elisabeth Grohmann ◽  
Johannes Huebner ◽  
Türkan Sakinc

Author(s):  
Zaitseva E.A. Zaitseva ◽  
Melnikova E.A. Melnikova ◽  
Komenkova T.S. Komenkova ◽  
Luchaninova V.N. Luchaninova ◽  
Turyansky A.I. Turyansky ◽  
...  

2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Thiago G. S. Paim ◽  
Luiza Pieta ◽  
Janira Prichula ◽  
Gustavo E. Sambrano ◽  
Renata Soares ◽  
...  

We report here a draft genome sequence ofEnterococcus faecalisstrain F165 isolated from a urine specimen in South Brazil. The genome size was 3,049,734 bp, with a G+C content of 37.38%, and genes related to antimicrobial resistance and adherence were found in the strain. These findings are consistent with pathogenesis ofE. faecalisspecies.


Sign in / Sign up

Export Citation Format

Share Document