scholarly journals Neuropeptide Y (NPY) Suppresses Experimental Autoimmune Encephalomyelitis: NPY1 Receptor-Specific Inhibition of Autoreactive Th1 Responses In Vivo

2003 ◽  
Vol 171 (7) ◽  
pp. 3451-3458 ◽  
Author(s):  
Sammy Bedoui ◽  
Sachiko Miyake ◽  
Youwei Lin ◽  
Katsuichi Miyamoto ◽  
Shinji Oki ◽  
...  
2005 ◽  
Vol 25 (3) ◽  
pp. 199-205 ◽  
Author(s):  
Ralf A. Linker ◽  
Michael Reinhardt ◽  
Martin Bendszus ◽  
Gesa Ladewig ◽  
Andreas Briel ◽  
...  

2013 ◽  
Vol 125 (7) ◽  
pp. 329-340 ◽  
Author(s):  
Kai-Chen Wang ◽  
Ching-Piao Tsai ◽  
Chao-Lin Lee ◽  
Shao-Yuan Chen ◽  
Gu-Jiun Lin ◽  
...  

ALA (α-lipoic acid) is a natural, endogenous antioxidant that acts as a PPAR-γ (peroxisome-proliferator-activated receptor-γ) agonist to counteract oxidative stress. Thus far, the antioxidative and immunomodulatory effects of ALA on EAE (experimental autoimmune encephalomyelitis) are not well understood. In this study, we found that ALA restricts the infiltration of inflammatory cells into the CNS (central nervous system) in MOG (myelin oligodendrocyte glycoprotein)-EAE mice, thus reducing the disease severity. In addition, we revealed that ALA significantly suppresses the number and percentage of encephalitogenic Th1 and Th17 cells and increases splenic Treg-cells (regulatory T-cells). Strikingly, we further demonstrated that ALA induces endogenous PPAR-γ centrally and peripherally but has no effect on HO-1 (haem oxygenase 1). Together, these data suggest that ALA can up-regulate endogenous systemic and central PPAR-γ and enhance systemic Treg-cells to inhibit the inflammatory response and ameliorate MOG-EAE. In conclusion, our data provide the first evidence that ALA can augment the production of PPAR-γ in vivo and modulate adaptive immunity both centrally and peripherally in EAE and may reveal further antioxidative and immunomodulatory mechanisms for the application of ALA in human MS (multiple sclerosis).


2021 ◽  
Author(s):  
◽  
Kevin Patrick Crume

<p>Multiple sclerosis (MS) is a multi-faceted disease, and is believed to be caused by an autoimmune response to myelin antigens in the central nervous system. Experimental autoimmune encephalomyelitis (EAE), an animal model for MS. manifests itself in various forms that parallel many aspects of MS, including the appearance of symptoms, initiation events, and pathophysiology. The hallmark of any immune response is the antigen-specific proliferation of immune cells, and during the initiation events of EAE, proliferating CD4+ T cells are the primary mediators of disease. This thesis explores if targeting these proliferating cells with the anti-mitotic compounds paclitaxel and peloruside A can delay or prevent the unset of EAE, thus providing a novel therapeutic avenue for MS research. The anti-cancer compound, paclitaxel, is an anti-mitotic drug that prevents microtubule depolymerisation. Although paclitaxel has been used in the clinical setting to treat cancer for over a decade, it has been determined that paclitaxel stimulates murine toll-like receptor 4 (TLR4) complex, which is the major LPS receptor. A novel microtubule-stabilising compound, peloruside, is currently subject to intensive investigations due to its functional similarity to paclitaxel. The results from this project found that peloruside and paclitaxel inhibited the proliferation of mitogen-stimulated splenocytes with IC50 values of 83 nM and 30 nM, respectively, but did not affect the viability of non-proliferating cells In contrast to paclitaxel, peloruside did not cause the TLR4-mediated production of the inflammatory mediators. TNF-epsilon, IL-12, and nitric oxide, when cultured with IFN-epsilon stimulated murine macrophages. Interestingly, when LPS was included with either paclitaxel or peloruside A, both drugs decreased the production of TNF-e and nitric oxide from macrophages, suggesting that microtubule-stabilising compounds may have anti-inflammatory effects. To identify any immunomodifying effects of paclitaxel in vivo, paclitaxel was administered to mice that were immunised with the myelin protein MOG in complete Freund's adjuvant (CFA) to induce EAE. When Taxol was administered to mice for 5 consecutive days immediately following CFA/MOG immunisation, the onset of EAE was delayed by approximately I week. Moreover, the administration of peloruside following the same treatment regime also resulted in a similar delay of disease onset. Taxol treatments, however, lead to significant mortality in immunised, but not unimmunised mice. Interestingly, although Taxol is an anti-mitotic drug, the proliferation of antigen-specific T cells was not inhibited in vivo by the Taxol treatment. The findings revealed in this thesis present an opportunity to pursue a new avenue of research for the therapeutic treatment of MS sufferers, and possibly other inflammatory autoimmune disorders.</p>


2022 ◽  
Vol 12 ◽  
Author(s):  
Lili Tang ◽  
Ge Li ◽  
Yang Zheng ◽  
Chunmei Hou ◽  
Yang Gao ◽  
...  

Tim-3, an immune checkpoint inhibitor, is widely expressed on the immune cells and contributes to immune tolerance. However, the mechanisms by which Tim-3 induces immune tolerance remain to be determined. Major histocompatibility complex II (MHC-II) plays a key role in antigen presentation and CD4+T cell activation. Dysregulated expressions of Tim-3 and MHC-II are associated with the pathogenesis of many autoimmune diseases including multiple sclerosis. Here we demonstrated that, by suppressing MHC-II expression in macrophages via the STAT1/CIITA pathway, Tim-3 inhibits MHC-II-mediated autoantigen presentation and CD4+T cell activation. As a result, overexpression or blockade of Tim-3 signaling in mice with experimental autoimmune encephalomyelitis (EAE) inhibited or increased MHC-II expression respectively and finally altered clinical outcomes. We thus identified a new mechanism by which Tim-3 induces immune tolerance in vivo and regulating the Tim-3-MHC-II signaling pathway is expected to provide a new solution for multiple sclerosis treatment.


Sign in / Sign up

Export Citation Format

Share Document