scholarly journals Tolerization of a Type I Allergic Immune Response through Transplantation of Genetically Modified Hematopoietic Stem Cells

2008 ◽  
Vol 180 (12) ◽  
pp. 8168-8175 ◽  
Author(s):  
Ulrike Baranyi ◽  
Birgit Linhart ◽  
Nina Pilat ◽  
Martina Gattringer ◽  
Jessamyn Bagley ◽  
...  
2007 ◽  
Vol 123 ◽  
pp. S77
Author(s):  
Ulrike Baranyi ◽  
Birgit Linhart ◽  
Nina Pilat ◽  
John Iacomini ◽  
Jessamyn Bagely ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 53-53
Author(s):  
Harini Nivarthi ◽  
Andrea Majoros ◽  
Eva Hug ◽  
Ruochen Jia ◽  
Sarada Achyutuni ◽  
...  

The curative potential of Type I interferons for patients suffering from Myeloproliferative Neoplasms (MPNs) has been reported and these are the only class of drugs that can lead to reduction of the mutant allelic burden in patients. However, modelling IFN treatment in mice has been challenging. Here, we report the use of murine pegylated IFNα (murine ropeginterferon-a, mRopeg) developed by PharmaEssentia (Taipei, Taiwan) to model IFN treatment in transgenic MPN mouse models. We started treating JAK2V617Ff/+;vavCre and control vavCre mice (n=6-8) with PBS or mRopeg (600 ng/mouse/week), by subcutaneous injections from the time they were 4 weeks old. The mice were bled every 2 weeks from the facial vein and the blood parameters were monitored. We observed significant normalization of platelet and WBC counts in Jak2-V617F fl/+ vavCre mice to wild type levels. No effect on hematocrit and hemoglobin level was observed in the Jak2-V617F fl/+ vavCre mice. VavCre control animals showed no sign of negative effect such as cytopenia during the entire treatment course. We observed a highly significant prolongation of the survival of mRopeg treated JAK2V617Ff/+;vavCre mice over a duration of 80 days of treatment. While all the PBS treated JAK2V617Ff/+;vavCre mice died within 60 days, all the mRopeg treated mice were still alive till the end of the treatment duration. We also generated a novel transgenic mouse model that conditionally expresses hybrid mutant CALR protein (murine exons 1-8 and human CALR del52 exon9) from the endogenous murine Calr locus. We bred them into vavCre background (in both heterozyhous and homozygous states) to induce expression of CALR-del52 in hematopoietic cells. Upon Cre recombinase expression, the endogenous murine exon 9 is replaced by the human del52 exon 9 and the expression of the humanized Calr-del52 oncoprotein is detectable by Western blot analysis using mutant CALR specific antibodies. Calr-del52 animals develop an essential thrombocythemia (ET) like phenotype when expressed in a heterozygous state with elevated number of hematopoietic stem cells and megakaryocytes in the bone marrow. In the homozygous state, the thrombocythemia is more severe with splenomegaly and older animals show anemia with increased WBC. Bone marrow histology shows megakaryocytic hyperplasia with no sign of fibrosis up to age of one year. We treated a cohort of animals with 600 ng mRopeg/PBS once a week for 4 weeks. Peripheral blood counts were determined at baseline and at regular intervals during treatment. At the end of treatment, mice were sacrificed, and splenic and bone marrow cells were immunophenotyped and quantified by FACS. We observed correction of thrombocythemia in the homozygous Calr-del52 mice but no unspecific decrease of platelet count in the vavCre mRopeg treated animals. We observed significant specific reduction of the long-term hematopoietic stem cells (LT-HSCs/fraction A) in homozygous CALR-del52 mice. In conclusion, Type I IFN treatment significantly reduces platelet counts to normal levels in both JAK2 and CALR mutant driven MPN mouse models. The prolongation of survival of JAK2V617F transgenic mice upon Type I IFN treatment is particularly remarkable; as no survival data is reported until now in any clinical trials or other animal models. Further experiments are required to understand the mechanism of action of this phenomenon. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2713-2721 ◽  
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
David A. Wilcox ◽  
Erin L. Kuether ◽  
Patricia A. Morateck ◽  
...  

Abstract Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific αIIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/−) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/− BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens.


1999 ◽  
Vol 189 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
Mickie Bhatia ◽  
Dominique Bonnet ◽  
Dongmei Wu ◽  
Barbara Murdoch ◽  
Jeff Wrana ◽  
...  

The identification of molecules that regulate human hematopoietic stem cells has focused mainly on cytokines, of which very few are known to act directly on stem cells. Recent studies in lower organisms and the mouse have suggested that bone morphogenetic proteins (BMPs) may play a critical role in the specification of hematopoietic tissue from the mesodermal germ layer. Here we report that BMPs regulate the proliferation and differentiation of highly purified primitive human hematopoietic cells from adult and neonatal sources. Populations of rare CD34+CD38−Lin− stem cells were isolated from human hematopoietic tissue and were found to express the BMP type I receptors activin-like kinase (ALK)-3 and ALK-6, and their downstream transducers SMAD-1, -4, and -5. Treatment of isolated stem cell populations with soluble BMP-2, -4, and -7 induced dose-dependent changes in proliferation, clonogenicity, cell surface phenotype, and multilineage repopulation capacity after transplantation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Similar to transforming growth factor β, treatment of purified cells with BMP-2 or -7 at high concentrations inhibited proliferation yet maintained the primitive CD34+CD38− phenotype and repopulation capacity. In contrast, low concentrations of BMP-4 induced proliferation and differentiation of CD34+ CD38−Lin− cells, whereas at higher concentrations BMP-4 extended the length of time that repopulation capacity could be maintained in ex vivo culture, indicating a direct effect on stem cell survival. The discovery that BMPs are capable of regulating repopulating cells provides a new pathway for controlling human stem cell development and a powerful model system for studying the biological mechanism of BMP action using primary human cells.


Sign in / Sign up

Export Citation Format

Share Document