scholarly journals An IRF4–MYC–mTORC1 Integrated Pathway Controls Cell Growth and the Proliferative Capacity of Activated B Cells during B Cell Differentiation In Vivo

2021 ◽  
pp. ji2100440
Author(s):  
Dillon G. Patterson ◽  
Anna K. Kania ◽  
Madeline J. Price ◽  
James R. Rose ◽  
Christopher D. Scharer ◽  
...  
2021 ◽  
Author(s):  
Dillon G Patterson ◽  
Anna K Kania ◽  
Madeline J Price ◽  
James R Rose ◽  
Christopher D Scharer ◽  
...  

Cell division is an essential component of B cell differentiation to antibody-secreting plasma cells, with critical reprogramming occurring during the initial stages of B cell activation. However, a complete understanding of the factors that coordinate early reprogramming events in vivo remain to be determined. In this study, we examined the initial reprogramming by IRF4 in activated B cells using an adoptive transfer system and mice with a B cell-specific deletion of IRF4. IRF4-deficient B cells responding to influenza, NP-Ficoll and LPS divided, but stalled during the proliferative response. Gene expression profiling of IRF4-deficient B cells at discrete divisions revealed IRF4 was critical for inducing MYC target genes, oxidative phosphorylation, and glycolysis. Moreover, IRF4-deficient B cells maintained an inflammatory gene expression signature. Complementary chromatin accessibility analyses established a hierarchy of IRF4 activity and identified networks of dysregulated transcription factor families in IRF4-deficient B cells, including E-box binding bHLH family members. Indeed, B cells lacking IRF4 failed to fully induce Myc after stimulation and displayed aberrant cell cycle distribution. Furthermore, IRF4-deficient B cells showed reduced mTORC1 activity and failed to initiate the B cell-activation unfolded protein response and grow in cell size. Myc overexpression in IRF4-deficient was sufficient to overcome the cell growth defect. Together, these data reveal an IRF4-MYC-mTORC1 relationship critical for controlling cell growth and the proliferative response during B cell differentiation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Li ◽  
Qin Zeng ◽  
Shuyi Wang ◽  
Mengyuan Li ◽  
Xionghui Chen ◽  
...  

Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 446-446 ◽  
Author(s):  
Jonathan Mandelbaum ◽  
Govind Bhagat ◽  
Tongwei Mo ◽  
Alexander Tarakhovsky ◽  
Laura Pasqualucci ◽  
...  

Abstract Abstract 446 The PRDM1/ BLIMP1 gene encodes a zinc finger transcriptional repressor that is expressed in a subset of germinal center (GC) B cells and in all plasma cells, and is required for terminal B cell differentiation. The BLIMP1 locus is biallelically inactivated by structural alterations in approximately one third of activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL) (Pasqualucci et al, J Exp Med 2006). Moreover, the expression of the Blimp1 protein is absent in up to 80% of ABC-DLBCL due to alternative genetic and epigenetic mechanisms. These findings suggest that BLIMP1 may function as a tumor suppressor gene whose loss may contribute to the pathogenesis of this lymphoma type by blocking terminal B cell differentiation. To investigate the role of BLIMP1 inactivation in lymphomagenesis in vivo, we tested whether conditional deletion of the Blimp1 gene in mouse B cells can promote the growth of lymphomas recapitulating the features of ABC-DLBCL. Toward this end, a mouse model carrying a loxP-flanked exon 5 of the Blimp1 gene that can be deleted by Cre-mediated recombination (Ohinata et al, Nature 2005) was crossed with a CD19-Cre deletor strain, expressing the Cre recombinase in all B cells. The resulting mice were monitored for tumor development and survival. Consistent with previous observations in a similar model (Shapiro-Shelef et al, Immunity 2003), Blimp1 conditional knockout (Blimp1CD19KO) mice showed a severe impairment in the generation of CD138+ plasma cells and had decreased serum immunoglobulin levels of all isotypes, together with a two-fold increase in the number of PNAhiCD95+ GC B cells. Over time, significantly reduced survival was observed in the Blimp1CD19KO cohort, with only 27% of the animals being alive at 15 months of age (LogRank p value<0.0001). Macroscopic and flow cytometric analysis of the lymphoid compartments revealed the presence of splenomegaly in 32/38 (84%) Blimp1CD19KO, as compared to 1/25 (4%) age-matched wildtype (WT) littermates, and a significant increase in IgM+IgD-CD21+CD23lo splenic B cells, indicative of marginal zone B cell expansion. In addition, 79% (n=30/38) of Blimp1CD19KO mice showed markedly hyperplastic bronchus-associated lymphoid tissue (BALT). Notably, between 10 and 16 months of age 34% (13/38) of these animals developed clonal lymphoproliferative disorders with a mature B cell phenotype (B220+Pax5+) and histologic features of DLBCL (n=6) or less aggressive lymphoid proliferations (LPD: n=6; marginal zone lymphoma: n=1), in contrast with 1/27 heterozygous and 0/25 WT animals. Sequencing analysis of the rearranged immunoglobulin variable region genes in lymphoma biopsies revealed the presence of somatic mutations in 6/8 samples investigated, demonstrating their origin from a GC-experienced B cell. Moreover, immunohistochemical staining for Bcl6 and Irf4 documented a late-GC “activated” B cell phenotype (Bcl6-Irf4+) in all tumors tested (n=4), consistent with the expansion of cells that had been committed to plasma cell differentiation. These data demonstrate that Blimp1 is a bona-fide tumor suppressor gene whose B-cell specific inactivation in vivo promotes the development of lymphomas sharing features of the human ABC-DLBCL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2422-2422
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Takao Sudo ◽  
Tomohiko Ishibashi ◽  
Yukiko Doi ◽  
...  

Abstract A large body of research has demonstrated that the maternal immune system is elaborately regulated during pregnancy to establish immunological tolerance to the fetus. Although our previous works have revealed that female sex hormones, particularly estrogen, play pivotal roles in suppressing maternal B-lymphopoiesis, the precise molecular mechanisms that mediate their functions are largely unknown. Because T and B lymphocytes function coordinately in the adaptive immune system, the inhibition of B-lymphopoiesis during pregnancy should be involved, at least in part, in “maternal-fetal immune tolerance.” Understanding the molecular mechanisms of tolerance would contribute to the development of new methods to inhibit immune responses after organ transplantation, such as rejection by the host or graft-versus-host diseases. The goal of our present study is to identify the molecular pathways through which estrogen exerts its suppressive effect on B-lymphopoiesis. We performed global analyses of estrogen-inducible genes in bone marrow (BM) stromal cells and identified the secreted frizzled-related protein (sFRP) family. A sFRP1-immunoglobulin G (Ig) fusion protein inhibited early differentiation of B-cells originating from BM-derived hematopoietic stem/progenitor cells (HSPC) in culture (Yokota T. et al. Journal of Immunol, 2008). Conversely, sFRP1 deficiency in vivo caused dysregulation of HSPC homeostasis in BM and aberrant increase of peripheral B lymphocytes (Renström J. et al. Cell Stem Cell, 2009). Therefore, in the present study we generated sFRP1 transgenic chimera (TC) mice that produced high levels of circulating sFRP1 after birth to examine the influence of sFRP1 on adult lymphopoiesis in vivo. Further, we generated sFRP5 TC mice using the same procedure to determine whether there were functional differences or redundancies between sFRP1 and sFRP5. The two are most closely related isoforms among the sFRP family and are known to play redundant roles during embryonic development; however, their physiological function in the immune system is largely unknown. Unexpectedly, while only subtle change was detected in the lymphoid lineage of sFRP1 TC mice, we found that the number of B cells was significantly reduced in the sFRP5 TC mice. The frequency of B cells, which normally account for approximately 50% of peripheral leukocytes of wild-type (WT) mice, was reduced to less than 20% in the sFRP5 TC mice. The suppression was likely specific to the B lineage, because overexpression of sFRP5 did not affect myeloid, T, or NK cells. Compared with WT littermates, the body size of sFRP5 TC mice was slightly, but significantly smaller. Thymocyte counts were not affected. In contrast, the number of splenocytes, particularly those of the B lineage, significantly decreased. In BM of sFRP5 TC mice, early B-cell differentiation was inhibited, resulting in the accumulation of cells whose phenotype corresponds to those of common lymphoid progenitors (CLPs). Gene array analyses of the accumulated CLPs indicated that sFRP5 affects the expression of adaptive immune system-related genes. Further, the sFRP5 overexpression was found to induce the expression of Wnt and Notch-related molecules that regulate the integrity of HSPCs. To determine the physiological involvement of sFRP5 in the inhibition of early B-cell differentiation, we exploited mice lacking sFRP5. It is noteworthy that, although the level of sFRP5 expression was minimal in steady-state BM, it was markedly induced after estrogen treatment. We injected water-soluble β-estradiol into WT or sFRP5-null mice for 4 days and evaluated their lympho-hematopoiesis 12 h after the last injection. While the highly HSPC-enriched Lineage- Sca-1+ c-kitHi Flt3- fraction of WT mice was resistant to the treatment, the same fraction of sFRP5-null mice showed a declining trend. Further, although the CLP fraction was significantly reduced in both strains, CLPs of sFRP5-null mice were more sensitive to estrogen than those of WT. We also performed gene expression analyses of WT and sFRP5-null mice after the estrogen treatment. We found that estrogen induced the expression of Hes1 in HSPCs of WT but not sFRP5-null mice. Thus, we conclude that estrogen-inducible sFRP5 blocks the differentiation of HSPCs in BM to B-lymphocytes in the presence of high levels of estrogen, at least in part by activation of the Notch pathway. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 18 (6) ◽  
pp. 1015-1020 ◽  
Author(s):  
Qiuyan Chen ◽  
Kara L. Mosovsky ◽  
A. Catharine Ross

ABSTRACTAll-trans-retinoic acid (RA) promotes the maturation and differentiation of B cells, which are known as a type of professional antigen-presenting cells. We show here that CD1d, a major histocompatibility complex class I-like molecule that presents lipid antigens, is expressed in the mouse spleen B cells and is increased by RA. Thus, we hypothesized that RA and the CD1d ligand, α-galactosylceramide (αGalCer), could interact to promote the differentiation, maturation, and antibody response of antigen-activated B cells. In isolated B cells, αGalCer alone markedly stimulated, and RA further increased B cell proliferation, synergizing with the B cell antigen receptor ligation via anti-μ antibody (P< 0.05). The significantly increased cell proliferation stimulated by αGalCer was abrogated in the B cells of CD1d-null mice. RA alone and combined with αGalCer also promoted B cell differentiation by the enrichment of sIgG1-, CD138-, and PNA/Fas-positive B cells (P< 0.05), suggesting a plasmacytic cell differentiation.In vivo, wild-type mice treated with RA and/or αGalCer during primary immunization with tetanus toxoid produced a higher serum anti-tetanus IgG response and had more bone marrow anti-tetanus antibody-secreting cells as determined by enzyme-linked immunospot assay (P< 0.05) in the secondary response, a finding indicative of heightened long-term memory; however, the increased antibody secretion after αGalCer treatment was abolished in CD1d-null mice. We provide evidence here that RA, together with αGalCer, can effectively regulate B cell proliferation and differentiation, ultimately promoting a more efficient antibody response to protein antigen. The results suggest that the combination of RA and αGalCer could be a useful adjuvant combination in vaccine strategies.


2013 ◽  
Vol 210 (13) ◽  
pp. 2823-2832 ◽  
Author(s):  
Beate Heizmann ◽  
Philippe Kastner ◽  
Susan Chan

Pre-B cell receptor (pre-BCR) signaling and migration from IL-7–rich environments cooperate to drive pre-B cell differentiation via transcriptional programs that remain unclear. We show that the Ikaros transcription factor is required for the differentiation of large pre-B to small pre-B cells. Mice deleted for Ikaros in pro/pre-B cells show a complete block of differentiation at the fraction C′ stage, and Ikaros-null pre-B cells cannot differentiate upon withdrawal of IL-7 in vitro. Restoration of Ikaros function rescues pre-B cell differentiation in vitro and in vivo and depends on DNA binding. Ikaros is required for the down-regulation of the pre-BCR, Igκ germline transcription, and Ig L chain recombination. Furthermore, Ikaros antagonizes the IL-7–dependent regulation of &gt;3,000 genes, many of which are up- or down-regulated between fractions C′ and D. Affected genes include those important for survival, metabolism, B cell signaling, and function, as well as transcriptional regulators like Ebf1, Pax5, and the Foxo1 family. Our data thus identify Ikaros as a central regulator of IL-7 signaling and pre-B cell development.


Blood ◽  
2020 ◽  
Author(s):  
Amandine Pignarre ◽  
Fabrice Chatonnet ◽  
Gersende Caron ◽  
Marion Haas ◽  
Fabienne Desmots-Loyer ◽  
...  

The terminal differentiation of B cells into antibody-secreting cells (ASCs) is a critical component of adaptive immune responses. However, it is a very sensitive process, which dysfunctions lead to a great variety of lymphoproliferative neoplasia including germinal center-derived lymphomas. To better characterize the late genomic events driving the ASC differentiation of human primary naive B cells, we used our in vitro differentiation system and a combination of RNA sequencing with ATAC-seq. Our results evidenced two mechanisms driving human terminal B cell differentiation. Firstly, after an initial response to IL-4, cells that committed to an ASC fate downregulated the CD23 marker and IL-4 signaling, whereas cells that maintained IL-4 signaling did not differentiate. Secondly, human CD23-negative cells also increased IRF4 protein to levels required for ASC differentiation, but independently of the ubiquitin-mediated degradation process previously described in the mouse. Finally, we showed that CD23-negative cells (i) carried the imprint of their previous activated B-cell status, (ii) were precursors of plasmablasts, and (iii) had a similar phenotype to in vivo pre-plasmablasts. Altogether, our results provide an unprecedented genomic characterization of the fate decision between activated B cells and plasmablast, which gives new insights in pathological mechanisms driving lymphoma biology.


1983 ◽  
Vol 157 (2) ◽  
pp. 583-590 ◽  
Author(s):  
M Okada ◽  
N Sakaguchi ◽  
N Yoshimura ◽  
H Hara ◽  
K Shimizu ◽  
...  

Human T hybridomas secreting B cell growth factors (BCGF) and B cell differentiation factor (BCDF) have been established. Hybrid clones 77-A, 94-C, and 98-F secreted BCGF that induced proliferation of anti-IgM-stimulated normal B cells. The culture supernatant from 77-A cells could also maintain continuous proliferation of colony-forming B cells, but the factor from 94-C could not. The addition of the supernatant from 94-C cells to that from 77-A cells, however, synergistically augmented the proliferation of colony-forming B cells, demonstrating the existence of two distinct kinds of BCGF and the synergism between them. These supernatants, however, showed no interleukin 2 (IL-2) or BCDF activity. A hybrid clone, 90-E, secreted BCDF. The culture supernatant induced Ig production in Cowan I-stimulated normal B cells or in a transformed B cell line, CESS. However, the supernatant had no BCGF or IL-2 activity. Anti-Ig-stimulated B cells, but not IL-2-dependent T cells, absorbed BCGF activity and CESS cells absorbed BCDF activity but not BCGF activity in the culture supernatants from T hybridomas. Taken collectively, the results demonstrated that IL-2, BCGF, and BCDF were different molecules and acceptors specific for the each molecule are present on the each target cell.


2019 ◽  
Author(s):  
Muhammad Assad Aslam ◽  
Mir Farshid Alemdehy ◽  
Eliza Mari Kwesi-Maliepaard ◽  
Marieta Caganova ◽  
Iris N. Pardieck ◽  
...  

AbstractDifferentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B cell fate remain unclear. Here we identified a central role for the histone H3K79 methyltransferase DOT1L in controlling B cell differentiation. Murine B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells showed aberrant differentiation and prematurely acquired plasma cell features. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative, pro-GC program. In addition, DOT1L supports the repression of an anti-proliferative, plasma cell differentiation program by maintaining expression of the H3K27 methyltransferase Ezh2, the catalytic component of Polycomb Repressor Complex 2 (PRC2). Our findings show that DOT1L is a central modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B cell naivety and GC B cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document