scholarly journals Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

2010 ◽  
Vol 2010 ◽  
pp. 1-32 ◽  
Author(s):  
Rajesh P. Rastogi ◽  
Richa ◽  
Ashok Kumar ◽  
Madhu B. Tyagi ◽  
Rajeshwar P. Sinha

DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280–315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.

2009 ◽  
Vol 37 (3) ◽  
pp. 495-510 ◽  
Author(s):  
John Rouse

The six Saccharomyces cerevisiae SLX genes were identified in a screen for factors required for the viability of cells lacking Sgs1, a member of the RecQ helicase family involved in processing stalled replisomes and in the maintenance of genome stability. The six SLX gene products form three distinct heterodimeric complexes, and all three have catalytic activity. Slx3–Slx2 (also known as Mus81–Mms4) and Slx1–Slx4 are both heterodimeric endonucleases with a marked specificity for branched replication fork-like DNA species, whereas Slx5–Slx8 is a SUMO (small ubiquitin-related modifier)-targeted E3 ubiquitin ligase. All three complexes play important, but distinct, roles in different aspects of the cellular response to DNA damage and perturbed DNA replication. Slx4 interacts physically not only with Slx1, but also with Rad1–Rad10 [XPF (xeroderma pigmentosum complementation group F)–ERCC1 (excision repair cross-complementing 1) in humans], another structure-specific endonuclease that participates in the repair of UV-induced DNA damage and in a subpathway of recombinational DNA DSB (double-strand break) repair. Curiously, Slx4 is essential for repair of DSBs by Rad1–Rad10, but is not required for repair of UV damage. Slx4 also promotes cellular resistance to DNA-alkylating agents that block the progression of replisomes during DNA replication, by facilitating the error-free mode of lesion bypass. This does not require Slx1 or Rad1–Rad10, and so Slx4 has several distinct roles in protecting genome stability. In the present article, I provide an overview of our current understanding of the cellular roles of the Slx proteins, paying particular attention to the advances that have been made in understanding the cellular roles of Slx4. In particular, protein–protein interactions and underlying molecular mechanisms are discussed and I draw attention to the many questions that have yet to be answered.


2006 ◽  
Vol 26 (21) ◽  
pp. 7977-7990 ◽  
Author(s):  
Courtney A. Lovejoy ◽  
Kimberli Lock ◽  
Ashwini Yenamandra ◽  
David Cortez

ABSTRACT DDB1, a component of a Cul4A ubiquitin ligase complex, promotes nucleotide excision repair (NER) and regulates DNA replication. We have investigated the role of human DDB1 in maintaining genome stability. DDB1-depleted cells accumulate DNA double-strand breaks in widely dispersed regions throughout the genome and have activated ATM and ATR cell cycle checkpoints. Depletion of Cul4A yields similar phenotypes, indicating that an E3 ligase function of DDB1 is important for genome maintenance. In contrast, depletion of DDB2, XPA, or XPC does not cause activation of DNA damage checkpoints, indicating that defects in NER are not involved. One substrate of DDB1-Cul4A that is crucial for preventing genome instability is Cdt1. DDB1-depleted cells exhibit increased levels of Cdt1 protein and rereplication, despite containing other Cdt1 regulatory mechanisms. The rereplication, accumulation of DNA damage, and activation of checkpoint responses in DDB1-depleted cells require entry into S phase and are partially, but not completely, suppressed by codepletion of Cdt1. Therefore, DDB1 prevents DNA lesions from accumulating in replicating human cells, in part by regulating Cdt1 degradation.


2010 ◽  
Vol 2010 ◽  
pp. 1-32 ◽  
Author(s):  
Rihito Morita ◽  
Shuhei Nakane ◽  
Atsuhiro Shimada ◽  
Masao Inoue ◽  
Hitoshi Iino ◽  
...  

DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly inThermus thermophilusHB8.


1998 ◽  
Vol 17 (8) ◽  
pp. 448-453 ◽  
Author(s):  
David A Boothman ◽  
Eric Odegaard ◽  
Chin-Rang Yang ◽  
Kelly Hosley ◽  
Marc S Mendonca

Adaptive survival responses (ASRs), whereby cells demonstrate a survival advantage when exposed to very low doses of ionizing radiation (IR) 4-24 h prior to a high dose challenge, were first reported over 15 years ago. These responses were linked to hormesis, which implied that exposure to low levels of IR may be beneficial to the cell. We postulate that increased survival does not necessarily mean that the treatment is beneficial.Studies at the molecular level indicate that ASRs are the result of misregulated cell cycle checkpoint responses, occurring in the G1 phase of the cell cycle after IR. Specific gene products (i.e., PCNA, cyclin D1, cyclin A, XIP8, xip5 and xip13) appear to control these cell cycle checkpoint responses. Certain neoplastic cells show potent ASRs because they bypass checkpoints which would otherwise lead to apoptosis or other forms of cell death (possibly necrosis), and/or these cancer cells lack genetic factors, such as specific caspases (cysteine aspartate-specific proteases), that control apoptosis. Alterations in these cell cycle checkpoints or apoptotic responses may also occur during IR-induced stress responses in normal cells, at critical times (10-18 days posttreatment) following IR. One IR-induced protein, XIP8, may be a critical controlling factor at this point where delayed-onset apoptosis occurs. Additionally, we have shown that the presence or absence (i.e., SCID cells) of nonhomologous DNA double strand break repair did not seem to influence ASRs, suggesting that ASRs may be caused by signal transduction stress responses.ASRs may be beneficial to survival, however, the consequence(s) of that survival may be dire. For example, many neoplastic cells exhibited far greater ASRs than normal cells. Additionally, ASRs were induced by as little as 1 cGy and and were enhanced by repeated exposures of low level radiation. The implications for radiotherapy are that when a patient arrives for port film imaging during the course of therapy, the dose-rate, overall level of exposure, and time between port film exposure and high dose IR treatment become potentially important factors for improved efficacy of treatment of certain cancers. Further research is warranted to determine what molecular factors are most important for ASRs, and current work is focusing on XIP8.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kaja Milanowska ◽  
Kristian Rother ◽  
Janusz M. Bujnicki

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.


2008 ◽  
Vol 28 (16) ◽  
pp. 5082-5092 ◽  
Author(s):  
Anwaar Ahmad ◽  
Andria Rasile Robinson ◽  
Anette Duensing ◽  
Ellen van Drunen ◽  
H. Berna Beverloo ◽  
...  

ABSTRACT ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and γH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1 −/− Ku86 −/− fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3′ overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.


2009 ◽  
Vol 206 (4) ◽  
pp. 893-908 ◽  
Author(s):  
Ying Huang ◽  
William Giblin ◽  
Martina Kubec ◽  
Gerwin Westfield ◽  
Jordan St. Charles ◽  
...  

Artemis was initially discovered as the gene inactivated in human radiosensitive T−B− severe combined immunodeficiency, a syndrome characterized by the absence of B and T lymphocytes and cellular hypersensitivity to ionizing radiation. Hypomorphic Artemis alleles have also been identified in patients and are associated with combined immunodeficiencies of varying severity. We examine the molecular mechanisms underlying a syndrome of partial immunodeficiency caused by a hypomorphic Artemis allele using the mouse as a model system. This mutation, P70, leads to premature translation termination that deletes a large portion of a nonconserved C terminus. We find that homozygous Artemis-P70 mice exhibit reduced numbers of B and T lymphocytes, thereby recapitulating the patient phenotypes. The hypomorphic mutation results in impaired end processing during the lymphoid-specific DNA rearrangement known as V(D)J recombination, defective double-strand break repair, and increased chromosomal instability. Biochemical analyses reveal that the Artemis-P70 mutant protein interacts with the DNA-dependent protein kinase catalytic subunit and retains significant, albeit reduced, exo- and endonuclease activities but does not undergo phosphorylation. Together, our findings indicate that the Artemis C terminus has critical in vivo functions in ensuring efficient V(D)J rearrangements and maintaining genome integrity.


2004 ◽  
Vol 24 (16) ◽  
pp. 6907-6918 ◽  
Author(s):  
Christoph Capiaghi ◽  
The Vinh Ho ◽  
Fritz Thoma

ABSTRACT Centromeres form specialized chromatin structures termed kinetochores which are required for accurate segregation of chromosomes. DNA lesions might disrupt protein-DNA interactions, thereby compromising segregation and genome stability. We show that yeast centromeres are heavily resistant to removal of UV-induced DNA lesions by two different repair systems, photolyase and nucleotide excision repair. Repair resistance persists in G1- and G2/M-arrested cells. Efficient repair was obtained only by disruption of the kinetochore structure in a ndc10-1 mutant, but not in cse4-1 and cbf1Δ mutants. Moreover, UV photofootprinting and DNA repair footprinting showed that centromere proteins cover about 120 bp of the centromere elements CDEII and CDEIII, including 20 bp of flanking CDEIII. Thus, DNA lesions do not appear to disrupt protein-DNA interactions in the centromere. Maintaining a stable kinetochore structure seems to be more important for the cell than immediate removal of DNA lesions. It is conceivable that centromeres are repaired by postreplication repair pathways.


2021 ◽  
Vol 22 (24) ◽  
pp. 13296
Author(s):  
Mariarosaria De Falco ◽  
Mariarita De Felice

All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Julie A. Klaric ◽  
Stas Wüst ◽  
Stephanie Panier

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document