scholarly journals ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair

2008 ◽  
Vol 28 (16) ◽  
pp. 5082-5092 ◽  
Author(s):  
Anwaar Ahmad ◽  
Andria Rasile Robinson ◽  
Anette Duensing ◽  
Ellen van Drunen ◽  
H. Berna Beverloo ◽  
...  

ABSTRACT ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and γH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1 −/− Ku86 −/− fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3′ overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.

2016 ◽  
Vol 27 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Satish Kumar Tadi ◽  
Robin Sebastian ◽  
Sumedha Dahal ◽  
Ravi K. Babu ◽  
Bibha Choudhary ◽  
...  

Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.


2020 ◽  
Vol 21 (4) ◽  
pp. 1380 ◽  
Author(s):  
Giovanni Pasquini ◽  
Virginia Cora ◽  
Anka Swiersy ◽  
Kevin Achberger ◽  
Lena Antkowiak ◽  
...  

Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.


2013 ◽  
Vol 288 (29) ◽  
pp. 20918-20926 ◽  
Author(s):  
Jinchuan Hu ◽  
Jun-Hyuk Choi ◽  
Shobhan Gaddameedhi ◽  
Michael G. Kemp ◽  
Joyce T. Reardon ◽  
...  

Nucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously. Here, we demonstrate that dual incisions occur in vivo identical to the in vitro reaction. Further, we show that transcription-coupled repair, which operates in the absence of the XPC protein, also generates the nominal 30-mer in UV-irradiated XP-C mutant cells. Finally, we report that the excised 30-mer is released from the chromatin in complex with the repair factors TFIIH and XPG. Taken together, our results show the congruence of in vivo and in vitro data on nucleotide excision repair in humans.


2020 ◽  
Vol 48 (17) ◽  
pp. e100-e100 ◽  
Author(s):  
Jasper Che-Yung Chien ◽  
Elie Tabet ◽  
Kelsey Pinkham ◽  
Cintia Carla da Hora ◽  
Jason Cheng-Yu Chang ◽  
...  

Abstract Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1–10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


2012 ◽  
Vol 199 (2) ◽  
pp. 235-249 ◽  
Author(s):  
Alex Pines ◽  
Mischa G. Vrouwe ◽  
Jurgen A. Marteijn ◽  
Dimitris Typas ◽  
Martijn S. Luijsterburg ◽  
...  

The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1.


2015 ◽  
Vol 112 (20) ◽  
pp. E2575-E2584 ◽  
Author(s):  
Dylan A. Reid ◽  
Sarah Keegan ◽  
Alejandra Leo-Macias ◽  
Go Watanabe ◽  
Natasha T. Strande ◽  
...  

Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1091
Author(s):  
Aya Kurosawa

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family, phosphorylates serine and threonine residues of substrate proteins in the presence of the Ku complex and double-stranded DNA. Although it has been established that DNA-PKcs is involved in non-homologous end-joining, a DNA double-strand break repair pathway, the mechanisms underlying DNA-PKcs activation are not fully understood. Nevertheless, the findings of numerous in vitro and in vivo studies have indicated that DNA-PKcs contains two autophosphorylation clusters, PQR and ABCDE, as well as several autophosphorylation sites and conformational changes associated with autophosphorylation of DNA-PKcs are important for self-activation. Consistent with these features, an analysis of transgenic mice has shown that the phenotypes of DNA-PKcs autophosphorylation mutations are significantly different from those of DNA-PKcs kinase-dead mutations, thereby indicating the importance of DNA-PKcs autophosphorylation in differentiation and development. Furthermore, there has been notable progress in the high-resolution analysis of the conformation of DNA-PKcs, which has enabled us to gain a visual insight into the steps leading to DNA-PKcs activation. This review summarizes the current progress in the activation of DNA-PKcs, focusing in particular on autophosphorylation of this kinase.


2021 ◽  
Author(s):  
Jeffrey A Hussmann ◽  
Jia Ling ◽  
Purnima Ravisankar ◽  
Jun Yan ◽  
Ann Cirincione ◽  
...  

Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways that are critical for maintaining genomic integrity. Here we present Repair-seq, a high-throughput screening approach that measures the effects of thousands of genetic perturbations on the distribution of mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair outcomes induced by two programmable nucleases (Cas9 and Cas12a) after knockdown of 476 genes involved in DSB repair or associated processes in the presence or absence of oligonucleotides for homology-directed repair (HDR). The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. Systematic interrogation of these dependencies then uncovered unexpected relationships among DSB repair genes and isolated incompletely characterized repair mechanisms. This work provides a foundation for understanding the complex pathways of DSB repair and for optimizing genome editing across modalities.


2007 ◽  
Vol 26 (11) ◽  
pp. 899-906
Author(s):  
Melissa G. Armelini ◽  
Keronninn M. Lima-Bessa ◽  
Maria Carolina N. Marchetto ◽  
Alysson R. Muotri ◽  
Vanessa Chiganças ◽  
...  

Recombinant adenoviral vectors provide efficient means for gene transduction in mammalian cells in vitro and in vivo. We are currently using these vectors to transduce DNA repair genes into repair deficient cells, derived from xeroderma pigmentosum (XP) patients. XP is an autosomal syndrome characterized by a high frequency of skin tumors, especially in areas exposed to sunlight, and, occasionally, developmental and neurological abnormalities. XP cells are deficient in nucleotide excision repair (affecting one of the seven known XP genes, xpa to xpg) or in DNA replication of DNA lesions (affecting DNA polymerase eta, xpv). The adenovirus approach allows the investigation of different consequences of DNA lesions in cell genomes. Adenoviral vectors carrying several xp and photolyases genes have been constructed and successfully tested in cell culture systems and in vivo directly in the skin of knockout model mice. This review summarizes these recent data and proposes the use of recombinant adenoviruses as tools to investigate the mechanisms that provide protection against DNA damage in human cells, as well as to better understand the higher predisposition of XP patients to cancer. Human & Experimental Toxicology (2007) 26, 899—906


Sign in / Sign up

Export Citation Format

Share Document