scholarly journals Proximal Tubule Cell Hypothesis for Cardiorenal Syndrome in Diabetes

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Akihiko Saito ◽  
Ryohei Kaseda ◽  
Michihiro Hosojima ◽  
Hiroyoshi Sato

Incidence of cardiovascular disease (CVD) is remarkably high among patients with chronic kidney disease (CKD), even in the early microalbuminuric stages with normal glomerular filtration rates. Proximal tubule cells (PTCs) mediate metabolism and urinary excretion of vasculotoxic substances via apical and basolateral receptors and transporters. These cells also retrieve vasculoprotective substances from circulation or synthesize them for release into the circulation. PTCs are also involved in the uptake of sodium and phosphate, which are critical for hemodynamic regulation and maintaining the mineral balance, respectively. Dysregulation of PTC functions in CKD is likely to be associated with the development of CVD and is linked to the progression to end-stage renal disease. In particular, PTC dysfunction occurs early in diabetic nephropathy, a leading cause of CKD. It is therefore important to elucidate the mechanisms of PTC dysfunction to develop therapeutic strategies for treating cardiorenal syndrome in diabetes.

2012 ◽  
Vol 303 (2) ◽  
pp. F266-F278 ◽  
Author(s):  
Šárka Lhoták ◽  
Sudesh Sood ◽  
Elise Brimble ◽  
Rachel E. Carlisle ◽  
Stephen M. Colgan ◽  
...  

Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca2+-independent phospholipase A2 (iPLA2β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.


2019 ◽  
Vol 30 (12) ◽  
pp. 2370-2383 ◽  
Author(s):  
Eirini Kefaloyianni ◽  
Manikanda Raja Keerthi Raja ◽  
Julian Schumacher ◽  
Muthu Lakshmi Muthu ◽  
Vaishali Krishnadoss ◽  
...  

BackgroundSustained activation of EGF receptor (EGFR) in proximal tubule cells is a hallmark of progressive kidney fibrosis after AKI and in CKD. However, the molecular mechanisms and particular EGFR ligands involved are unknown.MethodsWe studied EGFR activation in proximal tubule cells and primary tubular cells isolated from injured kidneys in vitro. To determine in vivo the role of amphiregulin, a low-affinity EGFR ligand that is highly upregulated with injury, we used ischemia-reperfusion injury or unilateral ureteral obstruction in mice with proximal tubule cell–specific knockout of amphiregulin. We also injected soluble amphiregulin into knockout mice with proximal tubule cell–specific deletion of amphiregulin’s releasing enzyme, the transmembrane cell-surface metalloprotease, a disintegrin and metalloprotease-17 (ADAM17), and into ADAM17 hypomorphic mice.ResultsYes-associated protein 1 (YAP1)–dependent upregulation of amphiregulin transcript and protein amplifies amphiregulin signaling in a positive feedback loop. YAP1 also integrates signals of other moderately injury-upregulated, low-affinity EGFR ligands (epiregulin, epigen, TGFα), which also require soluble amphiregulin and YAP1 to induce sustained EGFR activation in proximal tubule cells in vitro. In vivo, soluble amphiregulin injection sufficed to reverse protection from fibrosis after ischemia-reperfusion injury in ADAM17 hypomorphic mice; injected soluble amphiregulin also reversed the corresponding protective proximal tubule cell phenotype in injured proximal tubule cell–specific ADAM17 knockout mice. Moreover, the finding that proximal tubule cell–specific amphiregulin knockout mice were protected from fibrosis after ischemia-reperfusion injury or unilateral ureteral obstruction demonstrates that amphiregulin was necessary for the development of fibrosis.ConclusionsOur results identify amphiregulin as a key player in injury-induced kidney fibrosis and suggest therapeutic or diagnostic applications of soluble amphiregulin in kidney disease.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250996
Author(s):  
Yasaman Ramazani ◽  
Noël Knops ◽  
Sante Princiero Berlingerio ◽  
Oyindamola Christiana Adebayo ◽  
Celien Lismont ◽  
...  

The calcineurin inhibitors (CNI) cyclosporine A and tacrolimus comprise the basis of immunosuppressive regimes in all solid organ transplantation. However, long-term or high exposure to CNI leads to histological and functional renal damage (CNI-associated nephrotoxicity). In the kidney, proximal tubule cells are the only cells that metabolize CNI and these cells are believed to play a central role in the origin of the toxicity for this class of drugs, although the underlying mechanisms are not clear. Several studies have reported oxidative stress as an important mediator of CNI-associated nephrotoxicity in response to CNI exposure in different available proximal tubule cell models. However, former models often made use of supra-therapeutic levels of tissue drug exposure. In addition, they were not shown to express the relevant enzymes (e.g., CYP3A5) and transporters (e.g., P-glycoprotein) for the metabolism of CNI in human proximal tubule cells. Moreover, the used methods for detecting ROS were potentially prone to false positive results. In this study, we used a novel proximal tubule cell model established from human allograft biopsies that demonstrated functional expression of relevant enzymes and transporters for the disposition of CNI. We exposed these cells to CNI concentrations as found in tissue of stable solid organ transplant recipients with therapeutic blood concentrations. We measured the glutathione redox balance in this cell model by using organelle-targeted variants of roGFP2, a highly sensitive green fluorescent reporter protein that dynamically equilibrates with the glutathione redox couple through the action of endogenous glutaredoxins. Our findings provide evidence that CNI, at concentrations commonly found in allograft biopsies, do not alter the glutathione redox balance in mitochondria, peroxisomes, and the cytosol. However, at supra-therapeutic concentrations, cyclosporine A but not tacrolimus increases the ratio of oxidized/reduced glutathione in the mitochondria, suggestive of imbalances in the redox environment.


Author(s):  
Craig C. Freudenrich ◽  
Daniel Hockett ◽  
Benjamin Kirk ◽  
Kurt Gilliland ◽  
Brian Scherer ◽  
...  

A major characteristic of human and experimental diabetes mellitus is enhanced urinary excretion of electrolytes (e.g. Na, K, Mg, Ca). The increased urinary electrolyte excretion can lead to low serum electrolyte concentrations (e.g. hypomagnesemia, hyponatremia, hypocalcemia, hypokalemia), although this issue remains controversial. Ultimately, elevated urinary electrolyte excretion can result in mineral deficiencies which have important consequences such as retinopathies, convulsions, osteoporosis, arrhythmias, and sudden death ischemia. The increased urinary electrolyte excretion could be due to osmotic diuresis and/or altered renal tubule cell ion homeostasis; however, few studies have addressed whether diabetes alters specific tubule cell ion homeostasis. In this study, we used electron probe x-ray microanalysis (EPXMA) to obtain quantitative microchemical images of proximal tubule cells from diabetic rats so that we could define how subcellular ion homeostasis is altered during diabetes.Adult male Sprague-Dawley rats were housed in individual metabolic cages and urine output was measured daily; peri-orbital plasma samples were collected every 3 days. Urine and plasma ion concentrations (Na, K, Ca, Mg) were assayed by atomic absorption spectroscopy, blood glucose was measured with a commercial glucometer, and urine glucose and ketones were detected with commercial strips.


1986 ◽  
Vol 251 (5) ◽  
pp. F911-F918 ◽  
Author(s):  
C. B. Langman ◽  
D. A. Bushinsky ◽  
M. J. Favus ◽  
F. L. Coe

Elevated blood ionized Ca concentration appears to be necessary for suppression by chronic metabolic acidosis (CMA) of serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels in vitamin D-replete rats eating a low-Ca diet (LCD). The present study asks whether in vitro 1,25(OH)2D3 production by proximal tubule cells from such rats is suppressed and whether suppression can be reversed in vitro by an altered ionic milieu. Young rats were fed LCD and given 1.5% NH4Cl in their drinking water for 10 days to produce CMA. Compared with controls, CMA rats had low serum 1,25(OH)2D3 levels. Tubules prepared from CMA rats produced 1,25(OH)2D3 at a low rate compared with control; variation of medium Ca and pH from 7.2 to 7.4 did not increase 1,25(OH)2D3 production. Reducing medium phosphorus concentration ([P]) increased 1,25(OH)2D3 production by tubules from control but not CMA rats. Increasing medium [P] increased 1,25(OH)2D3 production by tubules from CMA but not control rats. CMA appears to alter proximal tubule cell response to medium [P] so that 1,25(OH)2D3 production rises when medium [P] is increased but not when it is reduced. Medium pH and Ca concentration do not appear to be important regulators of renal 1,25(OH)2D3 production in short-term incubations.


Diabetology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 31-35
Author(s):  
Keiichiro Matoba

Diabetic kidney disease (DKD) is a global epidemic leading to end-stage renal disease (ESRD) and susceptibility to cardiovascular disease, with few therapeutic interventions. A hallmark of DKD is the activation of the renin-angiotensin-aldosterone system and hemodynamic changes in glomerulus. Although intensive therapy with agents that targets those abnormalities lowers the risk of DKD progression, it does not completely abolish the risk of ESRD and cardiovascular events. Recent studies have illustrated the importance of renal inflammation, oxidative stress, and activated Rho-associated protein kinase (ROCK) signaling as essential pathogenesis for the development of DKD. In this commentary, these topics will be discussed.


1972 ◽  
Vol 54 (2) ◽  
pp. 232-245 ◽  
Author(s):  
Hans-G Heidrich ◽  
Rolf Kinne ◽  
Eva Kinne-Saffran ◽  
Kurt Hannig

Two different membrane fractions were obtained from a brush-border fraction of rat kidney cortex by using their different electrical surface charges in preparative free-flow electrophoresis. One membrane fraction contained only morphologically intact microvilli and was characterized by a high specific activity of alkaline phosphatase. The other fraction morphologically resembled classical plasma membranes by possessing junctional complexes and a high Na-K-ATPase activity The contamination of the isolated membrane fractions by other cell organelles was extremely low These two fractions represent the apical (luminal) and the basal (interstitial) area of the renal proximal tubule cell membrane and clearly demonstrate the polarity of this cell.


1998 ◽  
Vol 9 (10) ◽  
pp. 1787-1797
Author(s):  
S Nigam ◽  
C E Weston ◽  
C H Liu ◽  
E E Simon

This study examines the role of the actin cytoskeleton and integrin expression in the recovery of cell adhesion in the proximal tubule cell line JTC-12 after peroxide injury. The cells were exposed to 10, 20, or 50 mM hydrogen peroxide for 10 min and then allowed to recover. Viability measurements by trypan blue exclusion confirmed that the injury was largely nonlethal with 85% viability at 1 h even at 50 mM peroxide. ATP levels fell immediately after the peroxide incubation in all groups to approximately 10% of normal, but already showed some recovery by 1 h and full recovery in the 10 and 20 mM groups by 24 h. Cell adhesion to extracellular matrix immediately after injury was depressed at 20 and 50 mM peroxide, but by 12 h was abnormal only at 50 mM peroxide and at 24 h was essentially normal at all peroxide concentrations. Immediately after exposure to 10 mM peroxide, there were subtle abnormalities in the actin cytoskeleton (thickening of fibrils) as assessed by phalloidin staining, with more pronounced effects at 20 and 50 mM. At 1 h, many cells showed collapse of the actin cytoskeleton to the periphery. There was some recovery at 4 h; by 12 h, the actin cytoskeleton showed further recovery, although was still abnormal (coarsened microfilaments), especially at 20 and 50 mM peroxide. By 24 h, the actin cytoskeleton showed only subtle coarsening. Integrin surface expression was assessed by flow cytometry. The alpha6 subunit on cells exposed to 20 mM peroxide was unchanged at 1 h and 4 h, but by 12 h had increased to 118.5+/-4.5% and by 24 h to 146+/-13.4% of control levels. The expression of the beta1 and alphaVbeta3 integrins remained unchanged. Thus, despite coarsening of the actin cytoskeleton and depressed ATP levels, cell adhesion recovered from oxidant stress. Abnormal cell adhesion after injury was not a consequence of a decrease in integrin expression, and recovery of cell adhesion was not a consequence of the modest and selective increase in integrin expression.


Sign in / Sign up

Export Citation Format

Share Document