scholarly journals X-RAY STUDIES AND ANTIBACTERIAL ACTIVITY IN COPPER AND COBALT COMPLEXES WITH IMIDAZOLE DERIVATIVE LIGANDS

2011 ◽  
Vol 56 (3) ◽  
pp. 786-792 ◽  
Author(s):  
ANA MARÍA ATRIA ◽  
PIEDAD CORTÉS-CORTÉS ◽  
MARÍA TERESA GARLAND ◽  
RICARDO BAGGIO ◽  
KARINA MORALES ◽  
...  
2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Kavipriya K C ◽  
Sudha A P ◽  
Sujatha K ◽  
Sowmya Lakshmi K

The interest in miniaturization of particles revealed the hidden applications of metal oxides. The potential applications of the particles may vary when the size of the particle is reduced. One of the alternative routes to the conventional approach is the use of plant extract for the synthesis of metal oxides NPs. In the framework of this study, the ecofriendly MgO nanoparticles were synthesized using Acalypha Indica leaf extract,functioning as reducing and capping agent by co-precipitation method. The predecessor taken here was Magnesium Nitrate. The biologically synthesized MgO NPs were characterized by various techniques like X ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), Scanning electron microscope (SEM) with Energy Dispersive X-ray spectroscopy(EDX) profile and its antibacterial activity is evaluated against causative organisms. XRD studies confirmed the face centered cubic crystalline structure of MgO NPs and the average crystalline size of MgO NPs calculated using Scherer’s formula was found to be 13 nm. FTIR spectrum shows a significant Mg-O vibrational band. Purity, surface morphology and chemical composition of elements were confirmed by SEM with EDX. The SEM result shows the fine spherical morphology with the grain size range between 43nm to 62nm. Antimicrobial assay of MgO NPs was examined against gram positive and negative bacteria. Appreciated activity was observed on the Staphylococcus aureus bacterial species. In general, the renewed attempt of this facile approach gave the optimum results of multifunctional MgO NPs.


2021 ◽  
Author(s):  
Ashwini Patil

Abstract The present research deals with the development of a novel bioinspired in situ fabrication of reduced graphene oxide (rGO)-silver nanoparticle (AgNPs) nanocomposite (rGO@AgNCs) using microbes namely Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). The fabricated rGO@AgNCs were characterized using Ultraviolet-visible (UV) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), particle size analysis, polydispersity index (PDI), zeta potential analysis, energy dispersive X-ray analysis (EDAX), Raman spectroscopy, powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM) analysis, etc. Furthermore, the rGO@AgNCs-PA and rGO@AgNCs-SA interaction with serum protein, pH stability study, and in vitro dissolution of AgNPs were also performed. The research findings of the proposed study demonstrated the simultaneous reduction of graphene oxide (GO) and AgNPs and the formation of rGO@AgNCs in the presence of microbes. The in vitro dissolution studies of rGO@AgNCs composites showed better AgNPs dissolution with controlled release and offered remarkable matrix integrity throughout the dissolution period. The size and stability of rGO@AgNCs-PA and rGO@AgNCs-SA had no significant changes at physiological pH 7.4. A minimal decrease in the zeta potential of rGO@AgNCs was observed, which may be due to the weak interaction of nanocomposites and albumin. The antibacterial application of the synthesized nanocomposite was evaluated against a pathogenic mastitis-forming bacterium. The obtained results suggested an admirable antibacterial activity of synthesized nanocomposites against the tested microbes. This knowledge will assist the scientific fraternity in designing novel antibacterial agents with enhanced antibacterial activity against various veterinary pathogens in near future.


2016 ◽  
Vol 87 (19) ◽  
pp. 2407-2419 ◽  
Author(s):  
Qingqing Zhou ◽  
Jingchun Lv ◽  
Yu Ren ◽  
Jiayi Chen ◽  
Dawei Gao ◽  
...  

This study presented a simple and environmentally friendly method of in situ synthesis of silver nanoparticles (AgNPs) on cotton fabrics for durable ultraviolet (UV) protection and antibacterial activity using Aloe vera leaf extraction (AVE) as a reducing and stabilizing agent. Cotton fabrics were pretreated in water, and then immersed in AgNO3 and AVE, respectively. Cotton fabrics were characterized by small angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, UV protection, antibacterial activity, and laundering durability. Comparing with the smooth surface of the control cotton fabric, SEM and energy dispersive X-ray spectrometry (EDX) results showed that there were a considerable number of Ag2O and AgNPs loading on the surface of the pretreated and Ag loaded cotton fabrics. The XRD pattern indicated, respectively, the existence of Ag2O and AgNPs, the structures of which were similar to JCPDS File No.65-3289 and JCPDS File No. 01-071-4613 on the pretreated and Ag loaded cotton fabrics. The pretreated and Ag loaded cotton fabrics showed excellent UV protection, antibacterial activity, and laundering durability, especially the Ag loaded cotton fabric, of which the UV protection factor value and transmission of UVA were 148 and 1.11%, respectively, after 20 washing cycles, and the clear zone width was more than 4 mm against E. coli or S. aureus. AgNPs facilitated the improvement of the thermal property of the cotton fabrics. Thus this facile in situ reduction of AgNPs with AVE may bring a promising and green strategy to produce functional textiles.


2018 ◽  
Vol 42 (10) ◽  
pp. 512-514
Author(s):  
Rui-bo Xu ◽  
Xiao-tian Yang ◽  
Hai-nan Li ◽  
Peng-cheng Zhao ◽  
Jiao-jiao Li ◽  
...  

Two new bis-Schiff bases containing a piperazine ring, N,N‘-bis(4-chlorobenzylidene)- and N,N‘-bis(4-cyanobenzylidene)-1,4-bis(3-aminopropyl)piperazine, were prepared by the reaction of N,N‘-bis(3-aminopropyl)piperazine with 4-chloro- and 4-cyanobenzaldehyde, respectively. The dichloro compound was fully identified by X-ray crystallography and it exhibited good antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis.


2011 ◽  
Vol 366 ◽  
pp. 404-407
Author(s):  
Li Hua Wang

The block single-crystals of taurine were obtained, and its structure was determined by single-crystal X-ray diffraction. The single-crystal X-ray analysis of taurine reveals that the crystal belongs monoclinic, space group P2(1)/c with a = 0.52824(10) nm, b = 1.1647(8) nm, c = 0.79236(13) nm, ß = 94.0850(10). The magnesium complex with taurine has been synthesized in ethanol. The antibacterial assay of the Mg (II) complex was measureed using a modified version of the 2-fold serial dilution method. The results show that the complex shows considerable antibacterial activity against escherichia coli, bacillus subtilis and staphylococcus white.


In this work, degradation of Ciprofloxacin has been studied over the catalyst Ag@Nd2WO6/ZnO (ANWZ) synthesized via hydrothermal method. The catalysts are characterized with techniques such as X-ray diffractometer, Scanning electron microscope with EDX spectroscopy and DRS- UV spectroscopy respectively. For the results shows, the PXRD spectroscopy was confirmed a phase purity and crystalline structure of the as-synthesized catalyst. The SEM results are explained about the morphology structure of the material, the structure spherical with nanorod like clustered morphology structure was shown in SEM and the reacting elements in the catalytic material are confirmed by EDX spectroscopy. And the DRS-UV spectroscopy technique is telling about the band energy value for prepared materials and also select the suitable way (i.e: Visible or UV light irradiation) for the degradation. The photocatalytic process, Ciprofloxacin (CIP) drug are degraded under visible light within 140 minutes and the degradation efficiency are 95.54%. The reusability test explains the efficiency and stability of the ANWZ catalyst and its stable up to the fifth run. Further, the photodegradation process, the catalyst is tested antibacterial activity study against Bacillus cereus and Escherichia Coli bacterial organisms. From the result, Bacillus bacteria contain more efficient antibacterial activity than that of E.coli bacteria


2020 ◽  
Vol 11 (4) ◽  
pp. 5382-5387
Author(s):  
Irshad Ul Haq Bhat ◽  
Maisarah Binti Alias

The approach towards green synthetic methods has been enormously encouraged to synthesise nanoparticles for various uses. In this study, the one-pot synthetic method was adapted to synthesise silver nanoparticles (AgNPs) using Melastoma malabathricum (M. malabathricum) aqueous extract. The formation of AgNPs was confirmed by observing the results obtained by optical characterisation methods. The plasma resonance band along with shoulder at 375 nm and 595 nm, respectively, in Uv-Visible spectra supported the conversion of silver (Ag) to AgNPs reduced by functional groups present in the plant extract. The size of AgNPs was 31 nm and cubic in shape as confirmed by X-ray diffractometry (XRD) using Scherer equation. X-Ray Fluorescence (XRF) results also confirmed the presence of silver. The FTIR characterisation confirmed the presence of reducing functional groups. The antibacterial activity of AgNPs against Staphylococcus aureus (S. aureus) was carried out by disc diffusion method with increasing concentration of AgNPs, and enhanced inhibition zone was observed. The AgNPs obtained can be further explored against different bacterial strains and can a potential candidate as an antibacterial agent using the green synthetic approach.


2016 ◽  
Vol 45 (48) ◽  
pp. 19399-19407 ◽  
Author(s):  
Dirong Gong ◽  
Xuequan Zhang ◽  
Kuo-Wei Huang

A new family of cobalt complexes (CoCl2-H, CoCl2-Me, CoCl2-iPr, CoBr2-H, CoBr2-Me, CoBr2-iPr, CoI2-H, CoI2-Me, and CoI2-iPr) supported by a PN3 ligand (6-(N,N′-di-t-butylphosphino)-2-pyrazol-yl-aminopyridine) have been prepared and fully characterized by FT-IR, elemental analysis, and X-ray analysis.


Author(s):  
Selma M.H. AL-Jawad ◽  
Zahraa S. Shakir ◽  
Duha S. Ahmed

ZnO/MWCNTs hybrid and doped with different concentration of Nickel element prepared by using Sol-gel been technique reported. All samples were prepared and characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectroscopy have been identified the structural, optical and morphological properties. X-ray diffraction showed the polycrystalline nature with hexagonal wutzite structure of hybrid and doped with Nickel. The crystalline size of the hybrid nanostructure was increasing from 23.73 nm to 34.59 nm. Besides, the UV-Vis spectroscopy showed a significant decrease in the band gap values from 2.97 eV to 2.01 eV. Whereas the FE-SEM analysis confirm the formation spherical shapes of ZnO NPs deposited on cylindrical tubes representing the MWCNTs. The antibacterial activity reveals that the inhibition zone of Ni doped-ZnO/MWCNTs hybrid was 28.5 mm, 26.5 mm toward E. coli and S. aureus bacteria, respectively.


Sign in / Sign up

Export Citation Format

Share Document