scholarly journals SPINEL LiFe xCo2-xO4 (0.25 ≤ x ≤ 1) AS CATHODES IN LITHIUM BATTERIES: RELATIONSHIP BETWEEN IONIC DISTRIBUTION AND LITHIUM ION INSERTION

2013 ◽  
Vol 58 (4) ◽  
pp. 2005-2010 ◽  
Author(s):  
NICOLE MUCHNICK ◽  
FRANCISCO HERRERA ◽  
DANIELA ALBURQUENQUE ◽  
RUBEN PASTENE ◽  
JUAN ORTIZ ◽  
...  
2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1984
Author(s):  
Yu-Hsun Nien ◽  
Chih-Ning Chang ◽  
Pao-Lin Chuang ◽  
Chun-Han Hsu ◽  
Jun-Lun Liao ◽  
...  

In recent years, portable electronic devices have flourished, and the safety of lithium batteries has received increasing attention. In this study, nanofibers were prepared by electrospinning using different ratios of nylon 66/polyacrylonitrile (PAN), and their properties were studied and compared with commercial PP separators. The experimental results show that the addition of PAN in nylon 66/PAN nanofibrous film used as separator of lithium-ion battery can enhance the porosity up to 85%. There is also no significant shrinkage in the shrinkage test, and the thermal dimensional stability is good. When the Li/LiFePO4 lithium battery is prepared by nylon 66/PAN nanofibrous film used as separator, the capacitor can be maintained at 140 mAhg−1 after 20 cycles at 0.1 C, and the coulombic efficiency is still maintained at 99%, which has excellent electrochemical performance.


CrystEngComm ◽  
2016 ◽  
Vol 18 (14) ◽  
pp. 2532-2540 ◽  
Author(s):  
Shuang Li ◽  
Qian Xu ◽  
Evan Uchaker ◽  
Xi Cao ◽  
Guozhong Cao

Amorphous, pseudohexagonal and orthorhombic Nb2O5 nanoparticles were synthesized by sol–gel process. The material characteristics and electrochemical performance of these polymorphs were compared.


2016 ◽  
Vol 4 (19) ◽  
pp. 7091-7106 ◽  
Author(s):  
Jian Xie ◽  
Qichun Zhang

Different organic electrode materials in lithium-ion batteries are divided into three types: positive electrode materials, negative electrode materials, and bi-functional electrode materials, and are further discussed.


2021 ◽  
Vol 105 (1) ◽  
pp. 247-258
Author(s):  
Serhii Dubinevych ◽  
Viacheslav Zinin ◽  
Volodymyr Redko ◽  
Boris A Blyuss ◽  
Elena Shembel ◽  
...  

Importance of lithium power sources is confirmed by the fact that on October 10, 2019, the Nobel Prize in Chemistry in 2019 was awarded for the development of lithium-ion batteries. 10 years earlier, in 2010,physicists Andre Geim and Kostya Novoselov were awarded the Nobel Prize in Physics "For groundbreaking experiments regarding the two dimensional material graphene". A synergistic effect of theory and practicality in the area of lithium batteries, and the theory and practicality in the field of graphene materials creates the unique possibility generate the innovative high-energy Li batteries based on the graphene materials.


Author(s):  
Ming-Jun Xiao ◽  
Hong Zhang ◽  
Bo Ma ◽  
Ze-Qi Zhang ◽  
Xiangyang Li ◽  
...  

Developing novel composite materials with delicate micro or nanoscale structures that enable fast lithium transport are crucial for the high performance anode materials of lithium batteries. Herein, we developed a...


1998 ◽  
Vol 21 (2) ◽  
pp. 123-146 ◽  
Author(s):  
G. Campet ◽  
A. Deshayes ◽  
J. C. Frison ◽  
N. Treuil ◽  
J. Portier

We have illustrated the important role played by the nanoscale materials in three-up-to-date energy topics.1/The solar-to-electrical energy conversion in photoelectrochemical cells: we have shown two favorable situations for which photoelectrochemical cells using porous nanocrystalline films have high efficiencies.2/The electrical energy storage in rechargeable rocking-chair lithium batteries: these systems, which use nanocrystalline materials, might be the next generation of rechargeable batteries showing higher capacity, cyclability, and safety than conventional lithium ion batteries.3/The energy saving with efficient electrochromic windows using nanocrystalline materials.


Author(s):  
Imran Hussain Sardar ◽  
Souren Bhattacharyya

Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content.


2012 ◽  
Vol 116 (40) ◽  
pp. 21208-21215 ◽  
Author(s):  
Jing Wu ◽  
Nellymar Membreno ◽  
Wen-Yueh Yu ◽  
Jaclyn D. Wiggins-Camacho ◽  
David W. Flaherty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document