scholarly journals Quantitative inheritance of resistance to Septoria tritici blotch in durum wheat in Tunisia

2014 ◽  
Vol 74 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Samia Berraies ◽  
Karim Ammar ◽  
Mohamed Salah Gharbi ◽  
Amor Yahyaoui ◽  
Salah Rezgui
2019 ◽  
Author(s):  
S. Ben M’Barek ◽  
P. Karisto ◽  
W. Abdedayem ◽  
M. Laribi ◽  
M. Fakhfakh ◽  
...  

AbstractMixtures of cultivars with contrasting levels of resistance can suppress infectious diseases in wheat, as demonstrated in numerous field experiments. Most studies focused on airborne pathogens in bread wheat, while splash-dispersed pathogens have received less attention, and no studies have been conducted in durum wheat. We conducted a two-year field experiment in Tunisia, to evaluate the performance of cultivar mixtures with varying proportions of resistance (0–100%) in controlling the polycyclic, splash-dispersed disease Septoria tritici blotch (STB) in durum wheat. To measure STB severity, we used a high-throughput method based on digital image analysis of 3074 infected leaves collected from 42 and 40 experimental plots during the first and second years, respectively. This allowed us to quantify pathogen reproduction on wheat leaves and to acquire a large dataset that exceeds previous studies with respect to accuracy and precision. Our analyses show that introducing only 25% of a disease-resistant cultivar into a pure stand of a susceptible cultivar provides a substantial reduction of almost 50% in disease severity compared to the susceptible pure stand. However, comprising the resistant component of two cultivars instead of one did not further improve disease control, contrary to predictions of epidemiological theory. Susceptible cultivars can be agronomically superior to resistant cultivars or be better accepted by growers for other reasons. Hence, if mixtures with only a moderate proportion of the resistant cultivar provide a similar degree of disease control as resistant pure stands, as our analysis indicates, such mixtures are more likely to be accepted by growers.


2021 ◽  
Vol 19 (3) ◽  
pp. e1002-e1002
Author(s):  
Rafael Porras ◽  

Aim of study: Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most important wheat diseases worldwide, affecting both bread and durum wheat. The lack of knowledge about the interaction of durum wheat with Z. tritici, together with limited resources of resistant durum wheat material, have both led to a rising threat for durum wheat cultivation, particularly in the Mediterranean Basin. In Spain, STB has increased its incidence in the last few years, leading to higher costs of fungicide applications to control the disease. Therefore, identification of new sources of resistance through wheat breeding stands out as an efficient method of facing STB. Area of study: The experimental study was conducted in growth chambers at the IFAPA facilities in Córdoba (Spain). Material and methods: The percentage of necrotic leaf area, the disease severity, and the pycnidium development through image analysis were evaluated from 48 durum wheat Spanish accessions (breeding lines and commercial cultivars) in growth chambers against an isolate of Z. tritici from Córdoba. Main results: Two breeding lines and six commercial cultivars showed resistant responses by limiting STB development through the leaf or its reproduction ability, while the other 40 accessions presented a susceptible response. Research highlights: Provided these resources of resistance in Spanish durum wheat genotypes, future breeding programs could be developed, incorporating both agronomic traits and resistance to STB.


2021 ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra Bahri ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
Udupa M. Sri ◽  
...  

Abstract Background: Septoria tritici blotch (STB) has marked durum wheat production worldwide. This fungal disease is until today a challenge for farmers, researchers and breeders all united in the aim of reducing its damage and improving wheat resistance. Tunisian durum wheat landraces were reported to be valuable genetic resources for resistance to biotic and abiotic stresses and are therefore prominently deployed in breeding programs to develop new varieties adapted to fungal diseases as STB and to climate change constraints overall.Results: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC >0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. Conclusions: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. The grouping pattern of accessions appear to be associated, to some extent, with the geographical pattern of the landraces. We suggested that GS2 accessions were mostly introduced from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 suscpetible Azizi and Jneh Khotifa accessions.


Author(s):  
VALERIA Scala ◽  
Chiara Pietricola ◽  
valentina farina ◽  
marzia beccaccioli ◽  
slaven zjalic ◽  
...  

The Septoria Leaf Blotch Complex (SLBC), caused by the two ascomycetes Zymoseptoria tritici and Parastagonospora nodorum, can reduce global yearly yield of wheat by up to 50%. In the last decade in Italy, SLBC incidence has increased; notably, durum wheat has proven to be more susceptible than common wheat. Field fungicide treatment can efficiently control these pathogens, but it leads to the emergence of resistant strains and adversely affects human and animal health, and the environment. Our previous studies indicated that active compounds produced by Trametes versicolor can restrict the growth of mycotoxigenic fungi and the biosynthesis of their secondary metabolites (e.g. mycotoxins). Specifically, we identified Tramesan: a 23 KDa -heteropolysaccharide secreted by T. versicolor that acts as a pro-antioxidant molecule in animal cells, fungi, and plants. Foliar-spraying of Tramesan (3.3 µM) in SLBC-susceptible varieties of durum significantly diminished symptoms of Stagonospora Nodorum Blotch (SNB) and Septoria Tritici Blotch (STB) by 75% and 65%, respectively. Tests were conducted under controlled conditions as well as in field. We show that Tramesan elicits wheat defence against SNB and STB augmenting the synthesis of defence-related hormones, notably JA and SA, that in turn switch on the expression of markers of defence (PR1, PR4 inter alia). In field experiments, yield of durum wheat plants treated with Tramesan was similar to that of untreated ones. The results suggest the use of Tramesan for protecting durum wheat against SLBC.


2020 ◽  
Vol 69 (9) ◽  
pp. 1655-1665
Author(s):  
Sarrah Ben M'Barek ◽  
Petteri Karisto ◽  
Wided Abdedayem ◽  
Marwa Laribi ◽  
Moez Fakhfakh ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 212-222
Author(s):  
A. V. Kharina ◽  
T. K. Shcheshegova

In 2017-2020 in the conditions of Kirov region there were studied 143 varieties, 115 perspective lines and 28 hybrids of the first generation of spring soft wheat according to the degree of resistance to septoria tritici blotch against the background of the natural development of infection. It has been established that development of the disease significantly increased with a decrease in air temperature during the «seedling-tillering» phase (r = -0.83…-0.96) and an increase in the amount of precipitation during «shooting» phase (r = +0.87…+0.90). Resistance to septoria tritici blotch was shown by 16.1 % collection samples. A significant (r = -0.83) decrease in yield by an average of 19 % in susceptible samples compared to resistant ones was revealed. The greatest breeding and immunological value were represented by the varieties of Russian selection: Tobolskaya, Tyumenskaya 29, Moskovskaya 35 and МIS, among which the early variety MIS was tolerant to septoria tritici blotch. Thirteen lines resistant to septoria tritici blotch were identified from the new breeding material. The varieties selected for resistance to septoria tritici blotch were used in hybridization. In F1 hybrids domination and overdomination in the inheritance of resistance to septoria tritici blotch prevailed, as well as weight of 1000 grains and yield per 1 m2. Among them, 8 hybrids F1  with the highest values of the dominance indices were identified. It has been established, that inheritance of resistance to septoria tritici blotch, weight of 1000 grains and yield of hybrids F1 occurs both in the maternal and paternal lines. The greatest immunological effect was obtained when using the varieties Daria (Russia) and Epos (Germany). The most productive hybrids were the variety Daria, taken as both a maternal and paternal form, as well as when using the Egisar 29 (Russia) variety as a maternal form.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 608 ◽  
Author(s):  
Valeria Scala ◽  
Chiara Pietricola ◽  
Valentina Farina ◽  
Marzia Beccaccioli ◽  
Slaven Zjalic ◽  
...  

The Septoria Leaf Blotch Complex (SLBC), caused by the two ascomycetes Zymoseptoria tritici and Parastagonospora nodorum, can reduce wheat global yearly yield by up to 50%. In the last decade, SLBC incidence has increased in Italy; notably, durum wheat has proven to be more susceptible than common wheat. Field fungicide treatment can efficiently control these pathogens, but it leads to the emergence of resistant strains and adversely affects human and animal health and the environment. Our previous studies indicated that active compounds produced by Trametes versicolor can restrict the growth of mycotoxigenic fungi and the biosynthesis of their secondary metabolites (e.g., mycotoxins). Specifically, we identified Tramesan: a 23 kDa α-heteropolysaccharide secreted by T. versicolor that acts as a pro-antioxidant molecule in animal cells, fungi, and plants. Foliar-spray of Tramesan (3.3 μM) on SLBC-susceptible durum wheat cultivars, before inoculation of causal agents of Stagonospora Nodorum Blotch (SNB) and Septoria Tritici Blotch (STB), significantly decreased disease incidence both in controlled conditions (SNB: −99%, STB: −75%) and field assays (SNB: −25%, STB: −30%). We conducted these tests were conducted under controlled conditions as well as in field. We showed that Tramesan increased the levels of jasmonic acid (JA), a plant defense-related hormone. Tramesan also increased the early expression (24 hours after inoculation—hai) of plant defense genes such as PR4 for SNB infected plants, and RBOH, PR1, and PR9 for STB infected plants. These results suggest that Tramesan protects wheat by eliciting plant defenses, since it has no direct fungicidal activity. In field experiments, the yield of durum wheat plants treated with Tramesan was similar to that of healthy untreated plots. These results encourage the use of Tramesan to protect durum wheat against SLBC.


2021 ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra Bahri ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
Udupa . Sripa ◽  
...  

Abstract Background: Septoria tritici blotch (STB) has marked durum wheat production worldwide. This fungal disease is until today a challenge for farmers, researchers and breeders all united in the aim of reducing its damage and improving wheat resistance. Tunisian durum wheat landraces were reported to be valuable genetic resources for resistance to biotic and abiotic stresses and are therefore prominently deployed in breeding programs to develop new varieties adapted to fungal diseases as STB and to climate change constraints overall.Results: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC >0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. Conclusions: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. The grouping pattern of accessions appear to be associated, to some extent, with the geographical pattern of the landraces. We suggested that GS2 accessions were mostly introduced from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 suscpetible Azizi and Jneh Khotifa accessions.


Sign in / Sign up

Export Citation Format

Share Document