scholarly journals Lamination of LTCC at low pressure and moderate temperature using screen-printed adhesives

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000348-000352 ◽  
Author(s):  
Thomas Maeder ◽  
Bo Jiang ◽  
Fabrizio Vecchio ◽  
Caroline Jacq ◽  
Peter Ryser ◽  
...  

In this work, we investigate a new method of low-pressure lamination of low-temperature cofired ceramic (LTCC) tapes, by pre-coating with specially-formulated adhesive layers. This allows fabrication of intricate structures that would be destroyed by high lamination pressures, yet preserves compatibility with standard processing operations, such as blanking, laser cutting, punching, via filling and screen printing. Techniques proposed previously are application of adhesive tapes, solvents or glues. These methods are applied after the tape processing steps and therefore require an extra operation in the processing chain, which may be unpractical, especially if the tape is very thin has been extensively cut. In our procedure, the adhesives are printed and dried on the blanked tape before any other operation, with the drying step also useful for pre-conditioning the tapes, which may then be stored as "standard" blanks. The adhesives are formulated to have low tack at room temperature, making them compatible with standard processing, but to become very soft at 50–60°C, allowing lamination at low pressures. Compatibility with different tape materials is investigated, and the requirements for adequate adhesive formulation are discussed.

2004 ◽  
Vol 831 ◽  
Author(s):  
Barbara Neubert ◽  
Frank Habel ◽  
Peter Bruckner ◽  
Ferdinand Scholz ◽  
Till Riemann ◽  
...  

ABSTRACTNon (0001) GalnN QWs have been grown by low pressure MOVPE on side facets of triangular shaped selectively grown GaN stripes. By analysing low temperature photo- and cathodoluminescence and room temperature electroluminescence, we found strong indications, that both, In and Mg are less efficiently incorporated on these side facets compared to the common (0001) plane with even lower efficiency for stripes running along (1–100) compared to (11–20). Nevertheless, we observed strong light emission from these quantum wells, supposed to be at least partly caused by the reduced piezo-electric field.


Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


1987 ◽  
Vol 48 (C6) ◽  
pp. C6-487-C6-492
Author(s):  
W. Liu ◽  
D. M. Ren ◽  
C. L. Bao ◽  
T. T. Tsong

2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


2021 ◽  
Vol 200 ◽  
pp. 113908
Author(s):  
Yafei Kuang ◽  
Ji Qi ◽  
Haijian Xu ◽  
Bo Yang ◽  
Bing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document